Journal of Mountain Science

, Volume 10, Issue 5, pp 734–742 | Cite as

Origin of sulfur and mode of gypsum formation in central Iraqi soils

  • Sabar Rahi Jasem Aljeboory
  • Ahmad Muhaimeed
  • MohammadHady FarpoorEmail author
  • K. A. Saliem


The δ18O and δD values of gypsum crystallization water together with δ18O and δ34S of sulfates were used as reliable techniques to study source of sulfur and mode of gypsum formation in selected central Iraqi soils. Six representative pedons on different geologic units were studied. The slope of 3.2 for δ18O and δD plot of gypsum crystallization water showed that evaporation was the major process of gypsum deposition in the study area. The mean δ34S value of +17.58 ‰ showed that Cretaceous sea sulfate followed by Tertiary is the source of sulfur in studied soils. The heavier δ34S value (+17.58 ‰) of the study area compared to central Iran (+13.5 ‰) proved that gypsum in central Iraq soils has been formed in the later stage of evaporation and that Iraqi landforms were cut off from the Tethys seaway after central Iran was evolved.


Sulfur geochemistry Gypsum crystallization water Tethys Sea Iraq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzanji AF (1973) Gypsiferous soils in Iraq. PhD Thesis, State University of Ghent, Belgium.Google Scholar
  2. Buck BJ, VanHoesen JG (2005) Assessing the applicability of isotopic analysis of pedogenic gypsum as a paleoclimate indicator, Southern New Mexico. Journal of Arid Environments 60: 99–114. DOI: 10.1016/j.jaridenv.2004.03.003.CrossRefGoogle Scholar
  3. Claypool GE, Hosler WT, Kaplan IR, et al. (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28: 199–260. DOI: 10.1016/0009-2541(80)90047-9.CrossRefGoogle Scholar
  4. Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702–1703. DOI: 10.2307/1708089.CrossRefGoogle Scholar
  5. Dowuouna GN, Mermut AR, Krouse HR (1992a) Isotopic composition of salt crusts in Saskatchewan, Canada. Chemical Geology 94: 205–213. DOI: 10.1016/S0009-2541(10)80005-1.CrossRefGoogle Scholar
  6. Dowuouna GN, Mermut AR, Krouse HR (1992b) Stable isotopes of salts in some acid sulfate soils of North America. Soil Science Society of America Journal 56: 1646–1653. DOI: 10.2136/sssaj1992.03615995005600050052x.CrossRefGoogle Scholar
  7. Dowuouna GN, Mermut AR, Krouse HR (1992c) Isotopic composition of hydration water in gypsum and hydroxyl in jarosite. Soil Science Society of America Journal 56: 309–313. DOI: 10.2136/sssaj1992.03615995005600010049x.CrossRefGoogle Scholar
  8. Dowuouna GN, Mermut AR, Krouse HR (1993) Stable isotope geochemistry of sulfate in relation to hydrogeology in southern Saskatchewan, Canada. Applied Geochemistry 8: 255–263. DOI: 10.1016/0883-2927(93)90040-N.CrossRefGoogle Scholar
  9. Ezwaran H, Barzanji AF (1974) Evidence for the neoformation of attapulgite in some soils of Iraq. In: Transactions of the 10th International Congress of Soil Science, V.7, 154–161. Nauk, Moscow.Google Scholar
  10. Farpoor MH, Khademi H, Eghbal MK, Krouse HR (2004) Mode of gypsum deposition in southeastern Iranian soils as revealed by isotopic composition of crystallization water. Geoderma 121: 233–242. DOI: 10.1016/j.geoderma.2003.11.013.CrossRefGoogle Scholar
  11. Farpoor MH, Krouse HR (2008) Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils and sediments in Loot Desert, central Iran. Geoderma 146: 283–290. DOI: 10.1016/j.geoderma.2008.06.002.CrossRefGoogle Scholar
  12. Farpoor MH, Krouse HR, Mayer B (2011) Geochemistry of carbon, oxygen and sulfur isotopes in soils along a climotoposequence in Kerman Province, central Iran. Journal of Agricultural Science and Technology 13: 953–964.Google Scholar
  13. Ford DC, Schwarcz HP (1981) Applications of stable isotope fractionation effects in waters, sedimentary deposits, flora and fauna. In: Goudie A. (ed.), Geomorphological Techniques. George Allen and Unwin, London. pp 288–291.Google Scholar
  14. Fry B, Silva SR, Kendall C, Anderson RK (2002) Oxygen isotope corrections for online δ34S analysis. Rapid Communications in Mass Spectrometry 16: 854–858. DOI: 10.1002/rcm.651.CrossRefGoogle Scholar
  15. Gat JR, Dansgaard W (1972) Stable isotope survey of the fresh water occurrences in Israel and the northern Jordan Rift Valley. Journal of Hydrology 16: 177–212. DOI: 10.1016/0022-1694(72)90052-2.CrossRefGoogle Scholar
  16. Gonfiantini R, Fontes JC (1963) Oxygen isotope fractionation in the water of crystallization of gypsum. Nature (Lond.) 200: 644–646. DOI: 10.1038/200644a0.CrossRefGoogle Scholar
  17. Halas S, Krouse HR (1982) Isotopic abundances of water of crystallization of gypsum from the Miocene evaporate formation, Carpathian Foredeep, Poland. Geochimica et Cosmochimica Acta 46: 293–296. DOI: 10.1016/0016-7037(82) 90257-5.CrossRefGoogle Scholar
  18. Hendry MJ, Krouse HR, Shakur MA (1989) Interpretation of oxygen and sulfur isotopes from dissolved sulfates in tills of southern Alberta, Canada. Water Resources Research 25(3): 567–572. DOI: 10.1029/WR025i003p00567.CrossRefGoogle Scholar
  19. IAEA (1970) Environmental Isotope Data No. 2, I.A.E.A. Technical Report Series No. 117.Google Scholar
  20. IAEA (1971) Environmental Isotope Data No. 3, I.A.E.A. Technical Report Series No. 129.Google Scholar
  21. IAEA (1973) Environmental Isotope Data No. 4, I.A.E.A. Technical Report Series No. 147.Google Scholar
  22. IAEA (1979) Environmental Isotope Data No. 6, I.A.E.A. Technical Report Series No. 192.Google Scholar
  23. Jassim SZ, Goff GJ (2006) Geology of Iraq. Publishers Dolin, Hlavni 2732, Prague and Moravian Museum, Zelny trh 6, Brno, printed in the Czech Republic.Google Scholar
  24. Kasprzyk A, Jasinska B (1998) Isotopic composition of the crystallization water of gypsum in the Badenian of the northern Carpathian Foredeep: a case study from the cores Przyborow 1 and Strzegom 143. Geology Quarterly 42:301–310.Google Scholar
  25. Khademi H, Mermut AR, Krouse HR (1997a) Isotopic composition of gypsum hydration water in selected landforms from central Iran. Chemical Geology 138: 245–255. DOI: 10.1016/S0009-2541(97)00017-X.CrossRefGoogle Scholar
  26. Khademi H, Mermut AR, Krouse HR (1997b) Sulfur isotope geochemistry of gypsiferous Aridisols from central Iran. Geoderma 80: 195–209. DOI: 10.1016/S0016-7061(97)000918.CrossRefGoogle Scholar
  27. Matsubaya O, Sakai H (1973) Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko type mineralization. Geochemical Journal 7: 153–165.CrossRefGoogle Scholar
  28. Mermut AR, Arshad MA (1987) Significance of sulfide oxidation in soil salinization in southern Saskatchewan, Canada. Soil Science Society of America Journal 51: 247–251. DOI: 10.2136/ sssaj1987.03615995005100010050x.CrossRefGoogle Scholar
  29. Muhaimeed AS (2007) Genesis of some gypsiferous soils in Iraq. Al-Takani Journal 13: 95–104.Google Scholar
  30. Podwojewski P, Arnold M (1994) The origin of gypsum in Vertisols in New Caledonia determined by isotopic characteristics of sulphur. Geoderma 63: 170–195. DOI: 10.1016/0016-7061(94)90062-0.CrossRefGoogle Scholar
  31. Pradhananga TM, Matsuo S (1985) D/H fractionation in sulfate hydrate-water systems. Journal of Physical Chemistry 89: 1869–1872. DOI: 10.1021/j100256a010.CrossRefGoogle Scholar
  32. Resacher F, Alosno H, Salazar K (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Science Review 63: 249–293. DOI:10.1016/S0012-8252(03)00037-0.CrossRefGoogle Scholar
  33. Salim KA (1997) Management of gypsiferous soils in Iraq. Workshop on the Management of Gypsiferous Soils. FAO Project TCP/SYR/4553. Aleppo, Syria.Google Scholar
  34. Schoenau JJ, Bettany JR (1989) 34S natural abundance variations in prairie and boreal forest soils. Journal of Soil Science 40: 397–413. DOI: 10.1111/j.1365-2389.1989.tb01283.x.CrossRefGoogle Scholar
  35. Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (2002) Field book for describing and sampling soils. National Soil Survey Center, NRCS, USDA, Nebraska. pp 228.Google Scholar
  36. Schwarcz HP, Cortecci G (1974) Isotopic analyses of spring and stream water sulfate from the Italian Alps and Apennines. Chemical Geology 13: 285–294. DOI: 10.1016/0009-2541(74) 90135-1.CrossRefGoogle Scholar
  37. Sengor AMC, Altiner D, Cin A, et al. (1988) Origin and assembly of the tethyside orogenic collage at the expense of gondwana Land. In: Audley-Charles MG, Hallam A. (Eds.), Gondwana and Tethys. Geological Society Special Publications 37: 119–181.CrossRefGoogle Scholar
  38. Sissakian VK (2000) Geological map of Iraq. Scale 1:1000 000 sheet No.1, 3rd Edition (explanatory text). Ministry of Industry and Minerals, State Company of Geological Survey and Mining, GEOSURVEY.Google Scholar
  39. Sofer Z (1978) Isotopic composition of hydration water in gypsum. Geochimica et Cosmochimica Acta 42: 1141–1149. DOI: 10.1016/0016-7037(78)90109-6.CrossRefGoogle Scholar
  40. Stewart MK (1974) Hydrogen and oxygen isotope fractionation during the crystallization of mirabilite and ice. Geochimica et Cosmochimica Acta 38: 167–172. DOI: 10.1016/0016-7037(74) 90201-4.CrossRefGoogle Scholar
  41. Yonge CJ, Krouse HR (1987) The origin of sulfates in Castleguard cave, Columbia Icefields Canada. Chemical Geology 111: 297–306. DOI: 10.1016/0168-9622(87)90018-2.Google Scholar
  42. Zak I, Gat JR (1975) Saline waters and residual brines in the Shiraz-Sarvistan basin, Iran. Chemical Geology 16: 179–188. DOI: 10.1016/0009-2541(75)90026-1.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sabar Rahi Jasem Aljeboory
    • 1
  • Ahmad Muhaimeed
    • 1
  • MohammadHady Farpoor
    • 2
    Email author
  • K. A. Saliem
    • 3
  1. 1.Soil Science Department, College of AgricultureUniversity of BaghdadBaghdadIraq
  2. 2.Soil Science Department, College of AgricultureShahid Bahonar University of KermanKermanIran
  3. 3.Ministry of AgricultureBaghdadIraq

Personalised recommendations