Journal of Mountain Science

, Volume 11, Issue 1, pp 215–235 | Cite as

Evidence for accelerating glacier ice loss in the Takht’e Solaiman Mountains of Iran from 1955 to 2010

  • Manuchehr FarajzadehEmail author
  • Neamat Karimi


This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data. The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas. The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively. It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades. Although the general trend is a clean ice area decrease, some advancement is observed over the period of 1997–2004. During 1987–1991 the maximum decrease in the clean ice area was observed. However, the clean ice area had steadily increased between 1997 and 2010. To quantify the elevation changes besides the debris-free change analysis, several Digital Elevation Models (DEMs) were extracted from aerial photo (1955), topographic map (1997), ASTER image (2002) and Worldview-2 image (2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases. Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis, the elevation change results revealed that the glacier surface lowering has occurred during 1955–2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers, respectively. The maximum thinning rate has been observed during 1997–2002 (about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year, respectively), which was compatible partially with debris-free change analysis. The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes (retreat or advance), due to the high uncertainty in glacier area delineation in such glaciers, it cannot reveal the actual glacier changes. Thus, both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.


Climate change Debris-free area Glacier Elevation changes Remote sensing Supraglacial lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizen VB, Kuzmichenok VA, Surazakov AB, et al. (2006) Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Annals of Glaciology 43: 202–213. DOI: 10.3189/172756406781812465.CrossRefGoogle Scholar
  2. Albert T (2002) Evaluation of remote sensing techniques for icearea classification applied to the Tropical Quelccaya ice cap, Peru. Polar Geography 26(3): 210–226. DOI: 10.1080/789610193.CrossRefGoogle Scholar
  3. Baltsavias EP (1996) Digital ortho-images — a powerful tool for the extraction of spatial- and geo-information. ISPRS Journal of Photogrammetry and Remote Sensing 51(2): 63–77. DOI: 10.1016/0924-2716(95)00014-3.CrossRefGoogle Scholar
  4. Berthier E, Arnaud Y, Vincent C, et al. (2006) Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters 33(8): L08502. DOI: 10.1029/2006gl025862.CrossRefGoogle Scholar
  5. Bishop MP, Bonk R, Kamp U, et al. (2001) Terrain analysis and data modeling for alpine glacier mapping. Polar Geography 25(3): 182–201. DOI: 10.1080/10889370109377712.CrossRefGoogle Scholar
  6. Bishop MP, Kargel JS, Kieffer HH, et al. (2000) Remote-sensing science and technology for studying glacier processes in high Asia. Annals of Glaciology 31(1): 164–170. DOI: 10.3189/1727 56400781820147.CrossRefGoogle Scholar
  7. Bolch T, Buchroithner MF, Kunert A, et al. (2007) Automated delineation of debris-covered glaciers based on ASTER data. In: Gomarasca, M.A. (Ed.), Geo Infor-mation in Europe (=Proc. 27th EARSeLSymposium, 4.-7.6.07, Bozen, Italy). Mill-press, Netherlands. pp 403–410.Google Scholar
  8. Bolch T, Buchroithner MF, Kunert A, et al. (2008) Automated delineation of debris-covered glaciers based on ASTER data. In M.A. Gomarasca (Ed.), GeoInformation in Europe. Bozen, Italy. pp 403–410.Google Scholar
  9. Bolch T, Kamp U (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Proceedings of the 8th international symposium on high mountain remote sensing cartography, La Paz, Bolivia.Google Scholar
  10. Bolch T, Menounos B, Wheate R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment 114(1):127–137. DOI: 10.1016/j.rse.2009.08.015.CrossRefGoogle Scholar
  11. Bolch T (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change 56(1–2):1–12. DOI: 10.1016/j.gloplacha.2006.07.009.Google Scholar
  12. Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surface Processes and Landforms 24(1):51–63. DOI: 10.1002/(sici)1096-9837(199901)24:1〈51::aid-esp948〉;2-h.CrossRefGoogle Scholar
  13. Chinn TJ (2001) Distribution of the glacial water resources of New Zealand. Journal of Hydrology 40(2): 139–187.Google Scholar
  14. Cox LH, March RS (2004) Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. Journal of Glaciology 50(170):363–370. DOI: 10.3189/172756504781829855.CrossRefGoogle Scholar
  15. Dall J, Madsen SN, Keller K, et al. (2001) Topography and penetration of the Greenland Ice Sheet measured with Airborne SAR Interferometry. Geophysical Research Letters 28(9):1703–1706. DOI: 10.1029/2000gl011787.CrossRefGoogle Scholar
  16. Dyurgerov MB, Meier M (1997) Mass balance of mountain and sub polar glaciers: A new global assessment for 1961–1990. Arctic and Alpine Research 29: 379–391.CrossRefGoogle Scholar
  17. Gao J, Liu Y (2001) Applications of remote sensing, GIS and GPS in glaciology: a review. Progress in Physical Geography 25(4): 520–540. DOI: 10.1177/030913330102500404.Google Scholar
  18. Gardelle J, Berthier E, Arnaud Y (2012) Impact of resolution and radar penetration on glacier elevation changes computed from multi-temporal DEMs. Journal of Glaciology 58(208):419–422.CrossRefGoogle Scholar
  19. Gjermundsen EF, Mathieu R, Kääb A, et al. (2011) Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978-2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data. Journal of Glaciology 57(204):667–683. DOI: 10.3189/002214311797409749.CrossRefGoogle Scholar
  20. Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sensing of Environment 97(4):458–469. DOI: 10.1016/j.rse.2005.05.010.CrossRefGoogle Scholar
  21. Haeberli W, Hoelzle M, Paul F, et al. (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology 46(1):150–160. DOI: 10.3189/172756407782871512.CrossRefGoogle Scholar
  22. Hall DK, Bayr KJ, Schoner W, et al. (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893-2001). Remote Sensing of Environment 86(4):566–577. DOI: 10.1016/S0034-4257(03)00134-2.CrossRefGoogle Scholar
  23. Hall DK, Williams RS, Bayr KJ (1992) Glacier recession in Iceland and Austria. Eos, Transactions American Geophysical Union 73(12):129–141. DOI: 10.1029/91eo00104.CrossRefGoogle Scholar
  24. Houghton JT, et al. (2001) Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York. PP 881.Google Scholar
  25. IPCC (2007) IPCC Fourth Assessment Report: Climate Change 2007, IPCC, Geneva, Switzerland.Google Scholar
  26. Jacobs JD, Simms EL, Simms A (1997) Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. Journal of Glaciology 43(143): 98–102.Google Scholar
  27. Jordan E, Ungerechts L, Cáceres B, et al. (2005) Estimation by photogrammetry of the glacier recession on the Cotopaxi Volcano (Ecuador) between 1956 and 1997 / Estimation par photogrammétrie de la récession glaciaire sur le Volcan Cotopaxi (Equateur) entre 1956 et 1997. Hydrological Sciences Journal 50(6): null–961. DOI:10.1623/hysj.2005.50.6.949.CrossRefGoogle Scholar
  28. Kääb A, et al. (2003) Glacier monitoring from ASTER imagery: accuracy and application. EARSeLeProc 2(1): 43–53.Google Scholar
  29. Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing 57(1–2):39–52. DOI: 10.1016/S0924-2716(02)00114-4.CrossRefGoogle Scholar
  30. Kääb A (2005) Remote sensing of mountain glaciers and permafrost creep. Zurich, Universitat Zurich. Geographisches Institut. (Schriftenreihe Physische Geographie 48).Google Scholar
  31. Kargel JS, Abrams MJ, Bishop MP, et al. (2005) Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment 99(1–2):187–219. DOI: 10.1016/j.rse.2005.07.004.CrossRefGoogle Scholar
  32. Karimi N, Farokhnia A, Karimi L, et al. (2012) Combining optical and thermal remote sensing data for mapping debriscovered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology 71(0):73–83. DOI: 10.1016/j.coldregions.2011.10.004.CrossRefGoogle Scholar
  33. Khromova TE, Dyurgerov MB, Barry RG (2003) Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophysical Research Letters 30(16):1863. DOI: 10.1029/2003gl017233.CrossRefGoogle Scholar
  34. Li B, Zhu AX, Zhang Y, et al. (2006) Glacier change over the past four decades in the middle Chinese Tien Shan. Journal of Glaciology 52(178):425–432. DOI: 10.3189/172756506781828557.CrossRefGoogle Scholar
  35. Moholdt G, Nuth C, Hagen JO, et al. (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114(11):2756–2767. DOI: 10.1016/j.rse.2010.06.008.CrossRefGoogle Scholar
  36. Moussavi MS, Zoej MJV, Vaziri F, et al. (2010) A new glacier inventory of Iran. Annals of Glaciology 50(53):93–103. DOI: 10.3189/172756410790595886.CrossRefGoogle Scholar
  37. Myint SW, Giri CP, Wang L, et al. (2008) Identifying Mangrove Species and Their Surrounding Land Use and Land Cover Classes Using an Object-Oriented Approach with a Lacunarity Spatial Measure. GIScience & Remote Sensing 45(2):188–208. DOI:10.2747/1548-1603.45.2.188.CrossRefGoogle Scholar
  38. Narama C, Shimamura Y, Nakayama D, et al. (2006) Recent changes of glacier coverage in the Western Teskey-Alatoo Range, Kyrgyz Republic, using Corona and Landsat. Annals of Glaciology 43: 223–229.CrossRefGoogle Scholar
  39. Niederer P, Bilenko V, Ershova N, et al. (2008) Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years. Climatic Change 86(1–2):227–234. DOI: 10.1007/s10584-007-9288-6.CrossRefGoogle Scholar
  40. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5(1):271–290. DOI: 10.5194/tc-5-271-2011.CrossRefGoogle Scholar
  41. Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264: 243–245. DOI: 10.1126/science.264.5156.243.CrossRefGoogle Scholar
  42. Pandey A, Ghosh S, Nathawat MS, et al. (2012) Area Change and Thickness Variation over Pensilungpa Glacier (J&K) using Remote Sensing. Journal of Indian Society Remote Sensing 40(2):245–255. DOI: 10.1007/s12524-011-0134-y.CrossRefGoogle Scholar
  43. Paul F, Barry RG, Cogley JG, et al. (2010) Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology 50(53):119–126. DOI: 10.3189/172756 410790595778.CrossRefGoogle Scholar
  44. Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment 89(4):510–518. DOI: 10.1016/j.rse.2003.11.007.CrossRefGoogle Scholar
  45. Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change 56(1–2):111–122. DOI: 10.1016/j.gloplacha.2006.07.007.Google Scholar
  46. Paul F, Kääb A, Maisch M, et al. (2002) The new remotesensing-derived Swiss glacier inventory: I. Methods. Annals of Glaciology 34(1):355–361. DOI: 10.3189/172756402781817941.CrossRefGoogle Scholar
  47. Paul F (2002) Combined technologies allow rapid analysis of glacier changes. Eos, Transactions American Geophysical Union 83(23):253–261. DOI: 10.1029/2002eo000177.CrossRefGoogle Scholar
  48. Paul F (2008) Calculation of glacier elevation changes with SRTM: is there an elevation-dependent bias?. Journal of Glaciology 54(188):945–946. DOI: 10.3189/002214308787779960.CrossRefGoogle Scholar
  49. Racoviteanu AE, Paul F, Raup B, et al. (2010) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 50(53):53–69. DOI: 10.3189/17275641 0790595804.CrossRefGoogle Scholar
  50. Ranzi R, Grossi G, Iacovelli L, et al. (2004) Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. In: Geoscience and Remote Sensing Symposium. IGARSS’04. Proceedings. 2004 IEEE International, 20–24 Sept. 2004 2004. pp 1144–1147. DOI: 10.1109/igarss.2004.1368616Google Scholar
  51. Sarıkaya MA (2012) Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences 46(0):190–194. DOI: 10.1016/j.jseaes.2011.12.009.CrossRefGoogle Scholar
  52. Shangguan D, Liu S, Ding Y, et al. (2006) Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Annals of Glaciology 43(1):79–85. DOI: 10.3189/172756406781812393.CrossRefGoogle Scholar
  53. Shukla A, Gupta RP, Arora MK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin, Himalaya. Journal of Glaciology 55(191):444–452. DOI: 10.3189/002214309788816632.CrossRefGoogle Scholar
  54. Shukla A, Gupta RP, Arora MK (2010) Delineation of debriscovered glacier boundaries using optical and thermal remote sensing data. Remote Sensing Letters 1(1):11–17. DOI: 10.1080/01431160903159316.CrossRefGoogle Scholar
  55. Vikhamar D, Solberg R (2003) Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sensing of Environment 88(3):309–323. DOI: 10.1016/j.rse.2003.06.004.CrossRefGoogle Scholar
  56. Wang P, Li Z, Li H, et al. (2012) Glacier No. 4 of Sigong River over Mt. Bogda of eastern Tianshan, central Asia: thinning and retreat during the period 1962–2009. Environmental Earth Science 66(1):265–273. DOI: 10.1007/s12665-011-1236-0.CrossRefGoogle Scholar
  57. Wangensteen B, Tønsberg OM, Kääb A, et al. (2006) Surface Elevation Change and High Resolution Surface Velocities for Advancing Outlets of Jostedalsbreen. Geografiska Annaler: Series A, Physical Geography 88(1):55–74. DOI: 10.1111/j.0435-3676.2006.00283.x.CrossRefGoogle Scholar
  58. Williams RS, Hall DK (1998) Use of remote-sensing techniques. In: Haeberli, W., M. Hoelzle and S. Suter (eds.), Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies. pp. 97–111, UNESCO Publishing, Paris.Google Scholar
  59. Ye Q, Kang S, Chen F, et al. (2006) Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology 52(179):537–545. DOI: 10.3189/172756506781828359.CrossRefGoogle Scholar
  60. Wang Y, Hou S, Hong S, et al. (2008) Glacier extent and volume change (1966-2000) on the Su-lo Mountain in northeastern Tibetan Plateau, China. Journal of Mountain Science 5(4):299–309. DOI: 10.1007/s11629-008-0224-7.CrossRefGoogle Scholar
  61. Zemp M, Roer I, Kääb A, et al. (2008) WGMS: Global Glacier Changes: facts and figures, UNEP, World Glacier Monitoring Service, Zurich, Switzerland. p 88.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of GeographyUniversity of Tarbiat ModaresTehranIran
  2. 2.Water Research InstituteDepartment of Water Resources ResearchTehranIran

Personalised recommendations