Journal of Mountain Science

, Volume 10, Issue 3, pp 455–463 | Cite as

Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of tibet

  • Gang Fu
  • Zhen-xi Shen
  • Xian-zhou ZhangEmail author
  • Cheng-qun Yu
  • Yu-ting Zhou
  • Yun-long Li
  • Peng-wan Yang


The alpine meadow, as one of the typical vegetation types on the Tibetan Plateau, is one of the most sensitive terrestrial ecosystems to climate warming. However, how climate warming affects the carbon cycling of the alpine meadow on the Tibetan Plateau is not very clear. A field experiment under controlled experimental warming and clipping conditions was conducted in an alpine meadow on the Northern Tibetan Plateau since July 2008. Open top chambers (OTCs) were used to simulate climate warming. The main objective of this study was to examine the responses of ecosystem respiration (R eco ) and its temperature sensitivity to experimental warming and clipping at daily time scale. Therefore, we measured R eco once or twice a month from July to September in 2010, from June to September in 2011 and from August to September in 2012. Air temperature dominated daily variation of Reco whether or not experimental warming and clipping were present. Air temperature was exponentially correlated with R eco and it could significantly explain 58∼96% variation of R eco at daily time scale. Experimental warming and clipping decreased daily mean R eco by 5.8∼37.7% and −11.9∼23.0%, respectively, although not all these changes were significant. Experimental warming tended to decrease the temperature sensitivity of R eco , whereas clipping tended to increase the temperature sensitivity of R eco at daily time scale. Our findings suggest that R eco was mainly controlled by air temperature and may acclimate to climate warming due to its lower temperature sensitivity under experimental warming at daily time scale.


Acclimation Air temperature Open top chamber Temperature sensitivity Respiration quotient (Q10


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahn M, Knapp M, Garajova Z, et al (2006) Root respiration in temperate mountain grasslands differing in land use. Global Change Biology 12: 995–1006. DOI:10.1111/j.1365-2486.2006. 01144.x.CrossRefGoogle Scholar
  2. Bahn M, Rodeghiero M, Anderson-Dunn M, et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11: 1352–1367. DOI: 10.1007/ s10021-008-9198-0.CrossRefGoogle Scholar
  3. Cao GM, Tang YH, Mo WH, et al.(2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology & Biochemistry 36: 237–243. DOI: 10.1016/ j.soilbio.2003.09.010.CrossRefGoogle Scholar
  4. Chen H, Tian HQ (2005) Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? Journal of Integrative Plant Biology 47: 1288–1302. DOI: 10.1111/j.1744-7909.2005.00211.x.CrossRefGoogle Scholar
  5. Conant RT, Dalla-Betta P, Klopatek CC, et al (2004) Controls on soil respiration in semiarid soils. Soil Biology & Biochemistry 36: 945–951. DOI: 10.1016/j.soilbio.2004.02.013.CrossRefGoogle Scholar
  6. Fu G, Shen Z, Zhang X, et al (2012a) Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing 38: 157–168. DOI: 10.5589/m12-023.CrossRefGoogle Scholar
  7. Fu G, Shen Z, Zhang X, et al (2012b) Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology 61: 158–160. DOI: 10.1016/j.apsoil.2012.05.002.CrossRefGoogle Scholar
  8. Fu G, Shen Z, Zhang X, et al (2012c) Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology 52: 27–29. DOI: 10.1016/j.ejsobi.2012.05.004.CrossRefGoogle Scholar
  9. Fu Y, Zheng Z, Yu G, et al (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6: 2879–2893.CrossRefGoogle Scholar
  10. Hudson JMG, Henry GHR (2010) High Arctic plant community resists 15 years of experimental warming. Journal of Ecology 98: 1035–1041. DOI: 10.1111/j.1365-2745.2010.01690.x.CrossRefGoogle Scholar
  11. Hunt JE, Kelliher FM, McSeveny TM, et al (2002) Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology 111: 65–82. DOI: 10.1016/s0168-1923(02) 00006-0.CrossRefGoogle Scholar
  12. IPCC (2007) Climate change 2007: the physical science basis. Working Group I contribution to the IPCC Fourth Assessment Report.Google Scholar
  13. Kato T, Tang YH, Gu S, et al (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology 124: 121–134. DOI: 10.1016/j.agrformet.2003. 12.008.CrossRefGoogle Scholar
  14. Kato T, Tang YH, Gu S, et al (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology 12: 1285–1298. DOI:10.1111/j.1365-2486.2006. 01153.x.CrossRefGoogle Scholar
  15. Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters 7: 1170–1179. DOI: 10.1111/j.1461-0248.2004.00677.x.CrossRefGoogle Scholar
  16. Klein JA, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology 11: 1440–1451. DOI: 10.1111/j.1365-2486.2005.00994.x.CrossRefGoogle Scholar
  17. Lellei-Kovács E, Kovács-Láng E, Kalapos T, et al (2008) Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem. Community Ecology 9: 29–37. DOI: 10.1556/ComEc.9.2008.1.4.CrossRefGoogle Scholar
  18. Lin XW, Zhang ZH, Wang SP, et al (2011) Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agricultural and Forest Meteorology 151: 792–802. DOI: 10.1016/j.agrformet.2011.01.009.CrossRefGoogle Scholar
  19. Luo YQ, Wan SQ, Hui DF, et al (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413: 622–625. DOI: 10.1038/35098065.CrossRefGoogle Scholar
  20. Nakano T, Nemoto M, Shinoda M (2008) Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agricultural and Forest Meteorology 148: 1456–1466. DOI: 10.1016/ j.agrformet.2008.04.011.CrossRefGoogle Scholar
  21. Ni J (2002) Carbon storage in grasslands of China. Journal of Arid Environments 50: 205–218. DOI: 10.1006/jare.2001. 0902.CrossRefGoogle Scholar
  22. Owensby CE, Ham JM, Auen LM (2006) Fluxes of CO2 from grazed and ungrazed tallgrass prairie. Rangeland Ecology & Management 59: 111–127. DOI: 10.2111/05-116r2.1.CrossRefGoogle Scholar
  23. Polley HW, Frank AB, Sanabria J, et al (2008) Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. Global Change Biology 14: 1620–1632. DOI:10.1111/j.1365-2486.2008.01599.x.CrossRefGoogle Scholar
  24. Saito M, Kato T, Tang Y (2009) Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology 15: 221–228. DOI: 10.1111/j.1365-2486.2008.01713.x.CrossRefGoogle Scholar
  25. Shen HH, Klein JA, Zhao XQ, et al (2009) Leaf photosynthesis and simulated carbon budget of Gentiana straminea from a decade-long warming experiment. Journal of Plant Ecology-Uk 2: 207–216. DOI: 10.1093/jpe/rtp025.CrossRefGoogle Scholar
  26. Shi PL, Sun XM, Xu LL, et al (2006) Net ecosystem CO2 exchange and controlling factors in a steppe — Kobresia meadow on the Tibetan Plateau. Science in China Series D-Earth Sciences 49: 207–218. DOI: 10.1007/s11430-006-8207-4.CrossRefGoogle Scholar
  27. Suh S, Lee E, Lee J (2009) Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils. Journal of Plant Ecology-Uk 2: 225–231. DOI: 10.1093/jpe/rtp021.CrossRefGoogle Scholar
  28. Wan SQ, Luo YQ (2003) Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Global Biogeochemical Cycles 17: 1054, DOI: 10.1029/2002GB001971.CrossRefGoogle Scholar
  29. Wang XH, Piao SL, Ciais P, et al (2010) Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biology & Biochemistry 42: 1728–1734. DOI: 10.1016/j.soilbio.2010.06.008.CrossRefGoogle Scholar
  30. Wohlfahrt G, Anderson-Dunn M, Bahn M, et al (2008) Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems 11: 1338–1351. DOI: 10.1007/s10021-008-9196-2.CrossRefGoogle Scholar
  31. Wu ZT, Dijkstra P, Koch GW, et al (2011a) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17: 927–942. DOI: 10.1111/j.1365-2486.2010. 02302.x.CrossRefGoogle Scholar
  32. Wu ZT, Koch GW, Dijkstra P, et al (2011b) Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient. Ecosystems 14: 1066–1080. DOI: 10.1007/s10021-011-9464-4.CrossRefGoogle Scholar
  33. Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology 15: 1544–1556. DOI: 10.1111/ j.1365-2486.2008.01807.x.CrossRefGoogle Scholar
  34. Xie H, Ye JS, Liu XM, et al (2010) Warming and drying trends on the Tibetan Plateau (1971-2005). Theoretical and Applied Climatology 101: 241–253. DOI: 10.1007/s00704-009-0215-9.CrossRefGoogle Scholar
  35. Xu L, Zhang X, Shi P, et al (2005) Establishment of apparent quantum yield and maximum ecosystem assimilation on Tibetan Plateau alpine meadow ecosystem. Science in China Series D-Earth Sciences 48: 141–147. DOI: 10.1360/05zd0014.Google Scholar
  36. Xu M, Qi Y (2001) Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles 15: 687–696. DOI: 10.1029/2000gb001365.CrossRefGoogle Scholar
  37. Xu ZF, Hu TX, Wang KY, et al (2009) Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China. Plant Species Biology 24: 27–34. DOI: 10.1111/j.1442-1984.2009.00229.x.CrossRefGoogle Scholar
  38. Yang MX, Nelson FE, Shiklomanov NI, et al (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews 103: 31–44. DOI: 10.1016/j.earscirev.2010.07.002.CrossRefGoogle Scholar
  39. Yao TD, Xie ZC, Wu XL, et al (1991) Climate change since little ice age recorded by Dunde ice cap. Science in China Series B 34: 760–767.Google Scholar
  40. Zhang XZ, Shi PL, Liu YF, et al (2005) Experimental study on soil CO2 emission in the alpine grassland ecosystem on Tibetan Plateau. Science in China Series D-Earth Sciences 48: 218–224. DOI: 10.1360/05zd0022.Google Scholar
  41. Zhang XZ, Zhang YG, Zhoub YH (2000) Measuring and modelling photosynthetically active radiation in Tibet Plateau during April–October. Agricultural and Forest Meteorology 102: 207–212. DOI: 10.1016/s0168-1923(00)00093-9.CrossRefGoogle Scholar
  42. Zhang YQ, Yu Q, Jiang J, et al (2008) Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology 14: 757–767. DOI: 10.1111/j.1365-2486.2008.01538.x.CrossRefGoogle Scholar
  43. Zhao L, Li YN, Xu SX, et al (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology 12: 1940–1953. DOI: 10.1111/j.1365-2486.2006.01197.xCrossRefGoogle Scholar
  44. Zhou X, Wan SQ, Luo YQ (2007) Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology 13: 761–775. DOI: 10.1111/j.1365-2486.2007. 01333.x.Google Scholar
  45. Zhou XH, Sherry RA, An Y, et al (2006) Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles 20: GB1003. DOI:10.1029./2005GB002526.Google Scholar
  46. Zhuang Q, He J, Lu Y, et al (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Global Ecology and Biogeography 19: 649–662. DOI: 10.1111/j.1466-8238.2010.00559.x.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gang Fu
    • 1
    • 2
  • Zhen-xi Shen
    • 1
  • Xian-zhou Zhang
    • 1
    Email author
  • Cheng-qun Yu
    • 1
  • Yu-ting Zhou
    • 1
    • 2
  • Yun-long Li
    • 1
    • 2
  • Peng-wan Yang
    • 1
    • 2
  1. 1.Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations