Nature conservation versus scenic quality: A GIS approach towards optimized tourist tracks in a protected area of Northwest Yunnan, China

Abstract

Development of appropriate tourism infrastructure is important for protected areas that allow public access for tourism use. This is meant to avoid or minimize unfavourable impacts on natural resources through guiding tourists for proper use. In this paper, a GIS-based method, the least-cost path (LCP) modelling, is explored for planning tourist tracks in a World Heritage site in Northwest Yunnan (China), where tourism is increasing rapidly while appropriate infrastructure is almost absent. The modelling process contains three steps: 1) selection of evaluation criteria (physical, biological and landscape scenic) that are relevant to track decision; 2) translation of evluation criteria into spatially explicit cost surfaces with GIS, and 3) use of Dijkstra’s algorithm to determine the least-cost tracks. Four tracks that link main entrances and scenic spots of the study area are proposed after optimizing all evaluation criteria. These tracks feature low-environmental impacts and high landscape qualities, which represent a reasonable solution to balance tourist use and nature conservation in the study area. In addtion, the study proves that the LCP modelling can not only offer a structured framwork for track planning but also allow for different stakeholders to participate in the planning process. It therefore enhances the effectivenss of tourism planning and managemnt in protected areas.

This is a preview of subscription content, access via your institution.

References

  1. Adriaensen F, Chardona JP, De Blustc G, et al. (2003) The application of ‘least-cost’ modeling as a functional landscape model. Landscape and Urban Planning 64(4): 233–247. DOI: 10.1016/S0169-2046(02)00242-6.

    Article  Google Scholar 

  2. Appleton JH (1975) The Experience of Landscapes. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  3. Appleton JH (1996) The Experience of Landscapes (2nd edition). John Wiley & Sons, Chichester, UK.

    Google Scholar 

  4. Atkinson DM, Deadman P, Dudycha D, et al. (2005) Multi-criteria evaluation and least cost path analysis for an arctic all-weather road. Applied Geography 25(4): 287–307. DOI: 10.1016/j.apgeog.2005.08.001.

    Article  Google Scholar 

  5. Beinat E (1997) Value Functions for Environmental Management. Kluwer Academic Publisher, Dordrecht, The Netherlands.

    Google Scholar 

  6. Beza BB (2010) The aesthetic value of a mountain landscape: A study of the Mt. Everest Trek. Landscape and Urban Planning 97(4): 306–317. DOI: 10.1016/j.landurbplan.2010.07.003.

    Article  Google Scholar 

  7. Bishop ID, Wherrett JR, Miller DR (2001) Assessment of path choices on a country walk using a virtual environment. Landscape and Urban Planning 52(4): 225–237. DOI: 10.1016/S0169-2046(00)00118-3.

    Article  Google Scholar 

  8. Buntaine MT, Mullen RB, Lassoie JP (2007) Human use and conservation planning in alpine areas of northwestern Yunnan, China. Environment, Development and Sustainability 9(3): 305–324. DOI: 10.1007/s10668-006-9025-8.

    Article  Google Scholar 

  9. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: A conservation application of graph theory. Journal of Environmental Management 59(4): 265–278. DOI: 10.1006/jema.2000.0373.

    Article  Google Scholar 

  10. Burrough PA, McDonnell RA (1998) Principles of Geographical Information Systems (2nd edition). Oxford University Press Oxford, UK.

    Google Scholar 

  11. Coffin AW (2007) From roadkill to road ecology: A review of the ecological effects of roads. Journal of Transport Geography 15(5): 396–406. DOI: 10.1016/j.jtrangeo.2006.11.006.

    Article  Google Scholar 

  12. Cole DN, Spildie DR (1998) Hiker, horse and llama trampling effects on native vegetation in Montana, USA. Journal of Environmental Management 53(1): 61–71. DOI: 10.1006/jema.1998.0192.

    Article  Google Scholar 

  13. Collischonn W, Pilar JV (2000) A directional dependent least-cost path algorithm for roads and canals. International Journal of Geographical Information Science 14(4): 397–406. DOI: 10.1080/13658810050024304.

    Article  Google Scholar 

  14. Crosetto M, Tarantola S (2001) Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. International Journal of Geographical Information Science 15(5):415–437. DOI: 10.1080/13658810110053125.

    Article  Google Scholar 

  15. Daniel TC (2001) Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape and Urban Planning 54(1–4) 267-281. DOI: 10.1016/S0169-2046(01)00141-4.

    Google Scholar 

  16. De Bruin S (2000) Querying probabilistic land cover data using fuzzy set theory. International Journal of Geographical Information Science 14(4): 359–372. DOI: 10.1080/13658810050024287.

    Article  Google Scholar 

  17. De Floriani L, Magillo P (2003) Algorithms for visibility computation on terrains: A survey. Environmental and Planning B: Planning and Design 30(5): 709–728. DOI: 10.1068/b12979.

    Article  Google Scholar 

  18. De Veer AA, Burrough PA (1978) Physiognomic landscape mapping in the Netherlands. Landscape Planning 5(1): 45–62. DOI: 10.1016/0304-3924(78)90015-1.

    Article  Google Scholar 

  19. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1(1): 269–271. DOI: 10.1007/BF01386390.

    Article  Google Scholar 

  20. Douglas DH (1994) Least-cost-path in GIS using an accumulated cost surface and slope lines. Cartographica 31(3): 37–51. DOI: 10.3138/D327-0323-2JUT-016M.

    Article  Google Scholar 

  21. Dramstad WE, Tveit MS, Fjellstad WJ, et al. (2006) Relationships between visual landscape preferences and map-based indicators of landscape structure. Landscape and Urban Planning 78(4): 465–474. DOI: 10.1016/j.landurbplan.2005.12.006.

    Article  Google Scholar 

  22. Dumont B, Roovers P, Gulinck H (2005) Estimation of off-track visits in a nature reserve: A case study in central Belgium. Landscape and Urban Planning 71(2–4): 311–321. DOI: 10.1016/j.landurbplan.2004.03.010.

    Google Scholar 

  23. Eastman JR (2006) Guide to GIS and Image Processing (IDRISI Andes). Clark University, Worcester, USA.

    Google Scholar 

  24. Eastman JR, Jin W, Kyem PAK, et al. (1995) Raster procedures for multi-criteria/multi-objective decisions. Photogrammetric Engineering & Remote Sensing 61(5): 539–547.

    Google Scholar 

  25. Etherington TR (2012) Least-cost modelling on irregular landscape graphs. Landscape Ecology 27(7): 957–968. DOI: 10.1007/s109 80-012-9747-y.

    Article  Google Scholar 

  26. Feldman SC, Pelletier RE, Walser E, et al. (1995) A prototype for pipeline routing using remotely sensed data and geographic information system analysis. Remote Sensing of Environment 53(2): 123–131. DOI: 10.1016/0034-4257(95)00047-5.

    Article  Google Scholar 

  27. Ferrarini A, Rossi G, Parolo G, et al. (2008) Planning low-impact tourist paths within a Site of Community Importance through the optimisation of biological and logistic criteria. Biological Conservation 141(4): 1067–1077. DOI: 10.1016/j.biocon.2008.01.013.

    Article  Google Scholar 

  28. Gahegan M, Ehlers M (2000) A framework for the modelling of uncertainty between remote sensing and geographic information systems. Journal of Photogrammetry and Remote Sensing 55(3): 176–188. DOI: 10.1016/S0924-2716.

    Article  Google Scholar 

  29. Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology 17(2): 420–432. DOI: 10.1046/j.1523-1739.2003.01408.x.

    Article  Google Scholar 

  30. Giordano LC, Riedel GS (2008) Multi-criteria spatial decision analysis for demarcation of greenway: A case study of the city of Rio Claro, Sao Paulo, Brazil. Landscape and Urban Planning 84(3–4): 301–311. DOI: 10.1016/j.landurbplan.2007.09.006.

    Article  Google Scholar 

  31. Hernandes J, Garcia L, Ayuga F (2004) Assessment of the visual impact made on the landscape by new buildings: A methodology for site selection. Landscape and Urban Planning 68(1): 15–28. DOI: 10.1016/S0169-2046(03)00116-6.

    Article  Google Scholar 

  32. Herzog TR (1985) A cognitive analysis of preference for waterscapes. Journal of Environmental Psychology 5(3): 225–241. DOI: 10.1016/s0272-4944(85)80024-4.

    Article  Google Scholar 

  33. Heuvelink GBM (1998) Error Propagation in Environmental Modelling with GIS. Taylor and Francis, London, UK.

    Google Scholar 

  34. Huang Z, Laffan SW (2009) Sensitivity analysis of a decision tree classification to input data errors using a general Monte Carlo error sensitivity model. International Journal of Geographical Information Science 23(11): 1433–1452. DOI: 10.1080/13658810802634949.

    Article  Google Scholar 

  35. Hur M, Nasar JL, Chun B (2010) Neighborhood satisfaction, physical and perceived naturalness and openness. Journal of Environmental Psychology 30(1): 52–59. DOI: 10.1016/j.jenvp.2009.05.005.

    Article  Google Scholar 

  36. IUCN (International Union for Conservation of Nature) (1994) Guidelines for Protected Areas Management Categories. IUCN, Gland, Switzerland.

    Google Scholar 

  37. Jankowski P (1995) Integrating geographical information systems and multiple criteria decision-making methods. International Journal of Geographical Information Systems 9(3): 251–273. DOI: 10.1080/02693799508902036.

    Article  Google Scholar 

  38. Jiang H, Eastman JR (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science 14(2): 173–184. DOI: 10.1080/136588100240903.

    Article  Google Scholar 

  39. Junker B, Buchecker M (2008) Aesthetic preferences versus ecological objectives in river restorations. Landscape and Urban Planning 85(3–4): 141–154. DOI: 10.1016/j.landurbplan.2007.11.002.

    Article  Google Scholar 

  40. Kaplan R, Kaplan S (1989) The Experience of Nature: A Psychological Perspective. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  41. Kyle GT, Mowen AJ, Tarrant M (2004) Linking place preferences with place meaning: An examination of the relationship between place motivation and place attachment. Journal of Environmental Psychology 24(4): 439–454. DOI: 10.1016/j.jenvp.2004.11.001.

    Article  Google Scholar 

  42. Laiolo P (2004) Diversity and structure of the bird community overwintering in the Himalayan subalpine zone: Is conservation compatible with tourism? Biological Conservation 115(2): 251–262. DOI: 10.1016/S0006-3207(03)00145-9.

    Article  Google Scholar 

  43. Lee J, Stucky D (1998) On applying viewshed analysis for determining least-cost paths on Digital Elevation Models. International Journal of Geographical Information Science 12(8): 891–905. DOI: 10.1080/136588198241554.

    Article  Google Scholar 

  44. Leung YF, Marion JL (1996) Trail degradation as influenced by environmental factors: A state-of-knowledge review. Journal of Soil and Water Conservation 51(2): 130–136.

    Google Scholar 

  45. Leung YF, Marion JL (1999) Assessing trail conditions in protected areas: Application of a problem-assessment method in Great Smoky Mountains National Park, USA. Environmental Conservation 26(4): 270–279. DOI: 10.1017/S0376892999000399.

    Article  Google Scholar 

  46. Leung YT, Newburger T, Jones M (2011) Developing a monitoring protocol for visitor-created informal trails in Yosemite National Park, USA. Environmental Management 47(1): 93–106. DOI: 10.1007/s00267-010-9581-4.

    Article  Google Scholar 

  47. Liddle M (1997) Recreational Ecology: The Ecological Impact of Outdoor Recreation and Ecotourism. Chapman& Hall, London, UK.

    Google Scholar 

  48. Li HL, Li DH, Li T, et al. (2010) Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake-case study of Wolong Nature Reserve in China. Ecological Modelling 221(6): 944–952. DOI: 10.1016/j.ecolmodel.2009.12.006.

    Article  Google Scholar 

  49. Lilburne L, Tarantola S (2009) Sensitivity analysis of spatial models. International Journal of Geographical Information Science 23(2): 151–168. DOI: 10.1080/13658810802094995.

    Article  Google Scholar 

  50. Llobera M (2001) Building past landscape perception with GIS: Understanding topographic prominence. Journal of Archaeological Science 28(9): 1005–1014. DOI: 10.1006/jasc.2001.0720.

    Article  Google Scholar 

  51. Llobera M (2003) Extending GIS-based visual analysis: The concept of visualscapes. International Journal of Geographical Information Science 17(1): 25–48. DOI: 10.1080/713811741.

    Article  Google Scholar 

  52. Lockwood M, Worboys GL, Kothari A (2006) Managing Protected Areas: A Global Guide. Earthscan, London, UK.

    Google Scholar 

  53. Lynn NA, Brown RD (2003) Effects of recreational use impacts on hiking experience in natural areas. Landscape and Urban Planning 64(1–2): 77–87. DOI: 10.1016/S0169-2046(02)00202-5.

    Article  Google Scholar 

  54. Malczewski J (2004) GIS-based land-use suitability analysis: A critical overview. Progress in Planning 62(1): 3–65. DOI: 10.1016/j.progress.2003.09.002.

    Article  Google Scholar 

  55. Marechal L, Semple S, Majolo B, et al. (2011) Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biological Conservation 144(9): 2188–2193. DOI: 10.1016/j.biocon.2011.05.010.

    Article  Google Scholar 

  56. McKinney ML (2005) Scaling of park trail length and visitation with park area: Conservation implications. Animal Conservation 8(2): 135–141. DOI: 10.1017/S1367943005001939.

    Article  Google Scholar 

  57. Newsome D, Dowling RK, Moore SA (2004) Wildlife Tourism. Channel View Publications, Clevedon, UK.

    Google Scholar 

  58. Ode A, Tveit MS, Fry G (2008) Capturing landscape visual character using indicators: Touching base with landscape aesthetic theory. Landscape Research 33(1): 89–117. DOI: 10.1080/01426390701773854.

    Article  Google Scholar 

  59. Ode A, Fry G, Tveit MS, et al. (2009) Indicators of perceived naturalness as drivers of landscape preference. Journal of Environmental Management 90(1): 375–383. DOI: 10.1016/ j.jenvman.2007.10.013.

    Article  Google Scholar 

  60. Olive ND, Marion, JL (2009) The influence of use-related, environmental, and managerial factors on soil loss from recreational trails. Journal of Environmental Management 90(3): 1483–1493. DOI: 10.1016/j.jenvman.2008.10.004.

    Article  Google Scholar 

  61. Palmer JF (2004) Using spatial metrics to predict scenic perception in a changing landscape: Dennis, Massachusetts. Landscape and Urban Planning 69(2-3): 201–218. DOI: 10.1016/j.landurbplan.2003.08.010.

    Article  Google Scholar 

  62. Potere D, Woodcock CE, Schneider A, et al. (2007) Patterns in forest clearing along the Appalachian Trail Corridor. Photogrammetric Engineering & Remote Sensing 73(7): 783–791.

    Article  Google Scholar 

  63. Purcell AT, Lamb RJ (1998) Preference and naturalness: An ecological approach. Landscape and Urban Planning 42(1): 57–66. DOI: 10.1016/S0169-2046(98)00073-5.

    Article  Google Scholar 

  64. Ramos A, Ramos F, Cifuentes P, et al. (1976) Visual landscape evaluation, a grid technique. Landscape Planning 3(1–2): 67–88. DOI: 10.1016/0304-3924(76)90103-9.

    Article  Google Scholar 

  65. Real E, Arce C, Sabucedo JM (2000) Classification of landscapes using quantitative and categorical data, and prediction of their scenic beauty in north-western Spain. Journal of Environmental Psychology 20(4): 355–373. DOI: 10.1006/jevp.2000.0184.

    Article  Google Scholar 

  66. Rees WG (2004) Least-cost paths in mountainous terrain. Computer & Geosciences 30(3): 203–209. DOI: 10.1016/j.cageo.2003.11.001.

    Article  Google Scholar 

  67. Robinson VB (2003) A perspective on the fundamentals of fuzzy sets and their use in Geographical Information Systems. Transaction in GIS 7(1): 3–30. DOI: 10.1111/1467-9671.00127.

    Article  Google Scholar 

  68. Rogge E, Nevens F, Gulinck H (2008) Reducing the visual impact of ‘greenhouse parks’ in rural landscapes. Landscape and Urban Planning 87(1): 76–83. DOI: 10.1016/j.landurbplan.2008.04.008.

    Article  Google Scholar 

  69. Ryan KL, Flink CA, Lagerwey P, et al. (1993) Trails for the Twenty-First Century. Island Press, Washington DC, USA.

    Google Scholar 

  70. Saaty T (1980) The Analytic Hierarchy Process. McGraw-Hill, New York, USA.

    Google Scholar 

  71. Schroeder HW, Daniel TC (1980) Predicting the scenic quality of forest road corridors. Environmental and Behavior 12(3): 349–366. DOI: 10.1177/0013916580123004.

    Article  Google Scholar 

  72. Sherman R, Mullen R, Li HM, et al. (2007) Alpine ecosystems of Northwest Yunnan, China: An initial assessment for conservation. Journal of Mountain Science 4(3): 181–192. DOI: 10.1007/s11629-007-0181-6.

    Article  Google Scholar 

  73. Snyder SA, Whitmore JH, Schneider IE, et al. (2008) Ecological criteria, participant preferences and location models: A GIS approach toward ATV trail planning. Applied Geography 28(4): 248–258. DOI: 10.1016/j.apgeog.2008.07.001.

    Article  Google Scholar 

  74. Stamps AE (2004) Mystery, complexity, legibility and coherence: A meta-analysis. Journal of Environmental Psychology 24(1): 1–16. DOI: 10.1016/S0272-4944(03)00023-9.

    Article  Google Scholar 

  75. Tegou LI, Polatidis H, Haralambopoulos DA (2010) Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management 91(11): 2134–2147. DOI: 10.1016/j.jenvman.2010.05.010.

    Article  Google Scholar 

  76. Thapa K, Bosssler J (1992) Accuracy of spatial data used in Geographic Information Systems. Photogrammetric Engineering & Remote Sensing 58(6): 835–841.

    Google Scholar 

  77. Tveit MS (2009) Indicators of visual scale as predictors of landscape preferences: A comparison between groups. Journal of Environmental Management 90(9): 2882–2888. DOI: 10.1016/j.jenvman.2007.12.021.

    Article  Google Scholar 

  78. Tveit MS, Ode A, Fry G (2006) Key concepts in a framework for analyzing visual landscape character. Landscape Research 31(3): 229–256. DOI: 10.1080/01426390600783269.

    Article  Google Scholar 

  79. Williams PW, Penrose RW, Hawkes S (1998) Shared decisionmaking in tourism land use planning. Annals of Tourism Research 25(4): 860–889. DOI: 10.1016/S0160-7383(98)00037-1.

    Article  Google Scholar 

  80. Xiang WN (1996) A GIS based method for trail alignment planning. Landscape and Urban Planning 35(1): 11–23. DOI: 10.1016/0169-2046(96)00303-9.

    Article  Google Scholar 

  81. Xiao W, Ding W, Cui LW, et al. (2003) Habitat degradation of Rhinopithecus bieti in Yunnan, China. International Journal of Primatology 24(2): 389–398. DOI: 10.1023/A:1023009518806.

    Article  Google Scholar 

  82. Yang YM, Wang J, Wang JH, et al. (2008) Biodiversity and Conservation in Yunnan (in Chinese). Science Press, Beijing, China.

    Google Scholar 

  83. Zadeh LA (1965) Fuzzy sets. Information and Control 8(3): 338–353. DOI: 10.1016/S0019-9958(65)90241-X.

    Article  Google Scholar 

  84. Zhou DQ, Grumbine RE (2011) National parks in China: Experiments with protecting nature and human livelihoods in Yunnan province, People’s Republic of China (PRC). Biological Conservation 144(5): 1314–1321. DOI: 10.1016/j.biocon.2011.01.002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming-yu Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, My., Van Coillie, F., Hens, L. et al. Nature conservation versus scenic quality: A GIS approach towards optimized tourist tracks in a protected area of Northwest Yunnan, China. J. Mt. Sci. 11, 142–155 (2014). https://doi.org/10.1007/s11629-012-2459-6

Download citation

Keywords

  • Tourist track
  • Spatial optimisation
  • Nature conservation
  • Landscape scenic quality
  • Protected area