Journal of Mountain Science

, Volume 7, Issue 1, pp 1–14 | Cite as

Atmospheric methane over the past 2000 years from a sub-tropical ice core, central Himalayas

  • Jiule LiEmail author
  • Baiqing Xu
  • Tandong Yao
  • Ninglian Wang
  • MacClune Ken


A high-resolution 2000-year methane record has been constructed from an ice core recovered at 7200 m a.s.l. on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval 0 ∼ 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship between atmospheric methane and climate change.

Key words

climate change ice core air bubble atmospheric methane Dasuopu Glacier central Himalayas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert M. R. 1993. National experiments on firn ventilation with heat transfer. Annuals of Glaciology 18: 161–165.Google Scholar
  2. Albert M. R., Grannas A. M., Bottenheim J., et al. 2002. Processes and properties of snow-air transfer in the high Arctic with application to interstitial ozone at Alert, Canada. Atmospheric Environment 36: 2779–2787.CrossRefGoogle Scholar
  3. Blunier T., Chappellaz J., Schwander J., et al. 1993. Atmospheric methane, record from a Greenland ice core over the last 1000 years. Geophysics Research Letter 20(20): 2219–2222.CrossRefGoogle Scholar
  4. Blunier T., Chappellaz J., Schwander J., et al. 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, 46–49.CrossRefGoogle Scholar
  5. Bolzan J. F. 1985. Ice flow at the Dome C ice divide based on a deep temperature profile. Journal of Geophysics Research 90(D5): 8111–8124.CrossRefGoogle Scholar
  6. Brook E. J., Harder S., Severinghaus J., et al. 2001. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles 14(2): 559–572.CrossRefGoogle Scholar
  7. Chappellaz J., Barnola J. M., Raynaud D., et al. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345: 127–131.CrossRefGoogle Scholar
  8. Cunningham J. and Waddington E. D. 1993. Air flow and dry deposition of non-sea salt in polar firn: paleoclimatic implications. Atmospheric Environment 27A(17): 2943–2956.Google Scholar
  9. Chappellaz J., Blunier T., Raynaud D., et al. 1993a. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366: 443–445.CrossRefGoogle Scholar
  10. Chappellaz J., Fung I. Y. and Thompson A. M. 1993b. The atmospheric CH4 increase since the Last Glacial Maximum. 1. Interaction with oxidants. Tellus 45B(3): 242–257.Google Scholar
  11. Chappellaz J., Blunier T., Kints S., et al. 1997. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysics Research 102(D13): 15987–15997.CrossRefGoogle Scholar
  12. Chappellaz J., Spahni R., Loulergue L., et al. 2006. Extending the atmospheric CH4 record back to ∼800 Kyr BP. Geophysics Research Abstract 8: 02652.Google Scholar
  13. Duval P. and Lorius C. 1980. Crystal size and climate record down to the last ice age from Antarctic ice. Earth Planet Science Letter 48: 59–64.CrossRefGoogle Scholar
  14. Dlugokencky E. J., Steele L. P., Lang P. M. et al. 1994. The growth rate and distribution of atmospheric methane. Journal of Geophysics Research 99: 17021–17043.CrossRefGoogle Scholar
  15. Dominé F. and Shepson P. B. 2002. Air-snow interactions and atmospheric chemistry. Science 297: 1506–1510.CrossRefGoogle Scholar
  16. Dimitrov L. 2003. Mud volcanoes-a significant source of atmospheric methane. Geo-Marine Letter 23, 155–161.CrossRefGoogle Scholar
  17. DUAN K., WANG N. and PU J. 2002. Events of abrupt change of India monsoon recorded in Dasuopu ice core from Himalayas. Chinese Science Bulletin 47(8): 691–696.CrossRefGoogle Scholar
  18. Etheridge D. M., Pearman G. I. and Fraser P. J. 1992. Changes in tropospheric methane between 1841 and 1978 from high accumulation-rate Antarctic ice core. Tellus 44B: 181–194.Google Scholar
  19. Etheridge D. M., Steel L. P., Francey R. J., et al. 1998. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. Journal of Geophysics Research 103(D13): 15979–15993.CrossRefGoogle Scholar
  20. Etiope G. and Milkov A. V. 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology 46: 997–1002.CrossRefGoogle Scholar
  21. Ferretti D. F., Miller J. B., White J. W. C., et al. 2005. Unexpected changes to the global methane budget over the past 2000 years. Science 309: 1714–1716.CrossRefGoogle Scholar
  22. Ferretti D. F., Miller J. B., White J. W. C., et al. 2007. Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmospheric Chemistry and Physics 7: 237–241.CrossRefGoogle Scholar
  23. Fu R., HU Y., Wright J. S., et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. PNAS 103(15): 5664–5669.CrossRefGoogle Scholar
  24. Gow A. J. and Williamson T. 1976. Rheological implications of the internal structure and crystal fabrics of West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geological Society of American Bulletin 87(12): 1665–1677.CrossRefGoogle Scholar
  25. HAN J., ZHOU T. and Nakawo M. 1989. Stratigraphic and structural features of ice cores from Chongce Ice Cap, West Kunlun Mountains. Bulletin of Glacier Research 7: 21–28.Google Scholar
  26. Houweling S., Rockmann T., Aben I., et al. 2006. Atmospheric constraints on global emissions of methane from plants. Geophysics Research Letter 33, L15821, doi:10.1029/2006GL026162.CrossRefGoogle Scholar
  27. Jones P. D., Briffa K. R., Barnett T. P. 1998. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene 8: 455.CrossRefGoogle Scholar
  28. Johnson C. E., Stevenson D. S., Collins W. J., et al. 2001. Role of climate feedback on methane and ozone studied with a coupled Ocean-Atmosphere-Chemistry model. Geophysics Research Letter 28(9): 1723–1726.CrossRefGoogle Scholar
  29. Jouzel J., Masson-Delmotte V., Cattani O., et al. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839): 793–796.CrossRefGoogle Scholar
  30. Kittridge J. S. and Roberts E. 1969. A carbon-phosphorous bond in nature. Science 164: 37–42.CrossRefGoogle Scholar
  31. Keeling R. F. and Shertz S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358: 723–727.CrossRefGoogle Scholar
  32. Kameda T. and Naruse R. 1994. Characteristics of bubble volume in firn-ice transition layers of ice cores from polar ice sheet. Annual of Glaciology 20: 95–100.Google Scholar
  33. Kaplan J. O. 2001. Wetlands at the Last Glacial Maximum: distribution and methane emissions, In Geophysical Applications of Vegetation Modeling. PhD Thesis, Lund University, ISBN:91-7874-089-4, 71–88.Google Scholar
  34. Keppler F., Hamilton J. T. G., Braß M., et al. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187–191.CrossRefGoogle Scholar
  35. Karl D. M., Beversdorf L., Bjorkman K. M., et al. 2008. Aerobic production of methane in the sea. National Geosociety 1: 473–478.CrossRefGoogle Scholar
  36. Lamb H.H. 1965. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1: 13–37.CrossRefGoogle Scholar
  37. Loulergue L., Schilt A., Spahni R., et al. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453: 383–386.CrossRefGoogle Scholar
  38. McConnell J. R., Bales R. C., Stewart R. W., et al. 1998. Physically based modeling of atmosphere-to-snow-to-firn transfer of H2O2 at the South Pole. Journal of Geophysics Research 103(D9): 10561–10570.CrossRefGoogle Scholar
  39. Mann M.E. 2002. Medieval Climatic Optimum. Encyclopedia of Global Environmental Change: 514–516.Google Scholar
  40. Moberg A., Sonechkin D. M., Holmgren K., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433: 613–617.CrossRefGoogle Scholar
  41. MacDonald G. M., Beilman D. W., Kremenetski K. V., et al. 2006. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314 285–288.CrossRefGoogle Scholar
  42. Meure C. M., Etheridge D., Trudinger C., et al. 2006. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysics Research Letter 33, L14810, doi: 10.1029/2006GL026152.CrossRefGoogle Scholar
  43. Petit J., Jouzel J., Raynaud D., et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
  44. Rasmusen R. A. and Khalil M. A. K. 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. Journal of Geophysics Research 89(D7): 11599–11605.CrossRefGoogle Scholar
  45. Raynaud D., Chappellaz J., Barnola J. M., et al. 1988. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature 333: 655–657.CrossRefGoogle Scholar
  46. Raynaud D., and Chappellaz J. 1993. The record of atmospheric methane. In: Khalil M A K (eds). Atmospheric methane: sources, sinks, and role in global change. NATO ASI Series, 113: 38–60.Google Scholar
  47. Reeh N. 1988. A flow-line model for calculating the surface profile and the velocity, strain-rate, and stress-fields in an ice sheet. Journal of Glaciology 34(116): 46–54.Google Scholar
  48. Ruddiman W. F., GUO Z., ZhOU X., et al. 2008. Early rice farming and anomalous methane trends. Quarternary Science Review 27: 1291–1295.CrossRefGoogle Scholar
  49. Sharp R. P. 1951. Accumulation and ablation on the Seward-Malaspina glacier system, Canada-Alaska. Geological Society of American Bulletin 62: 725–744.CrossRefGoogle Scholar
  50. Schwander J. and Stauffer B. 1984. Age difference between polar ice and the air trapped in its bubbles. Nature 311: 45–47.CrossRefGoogle Scholar
  51. Stauffer B., Schwander J. and Oeschger H. 1985. Enclosure of air during metamorphosis of dry firn to ice. Annual Glaciology 6: 108–122.Google Scholar
  52. Schwander J., Barnola J. M., Andrié C., et al. 1993. The age of the air in the firn and the ice at Summit, Greenland. Journal of Geophysics Research 98: 2831–2838.CrossRefGoogle Scholar
  53. Sowers T., Brook E., Etheridge D., et al. 1997. An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores. Journal of Geophysics Research 102(C12): 26527–26538.CrossRefGoogle Scholar
  54. Stauffer B., Lochbrinner E., Oeschger H., et al. 1988. Methane concentration in the glacial atmosphere was only half that of the pre-industrial Holocene. Nature 332: 812–814.CrossRefGoogle Scholar
  55. Steele L. P., Dlugokencky E. J., Lang P. M., et al. 1992. Slowing down of global accumulation of atmospheric methane during the 1980s. Nature 358: 313–316.CrossRefGoogle Scholar
  56. Street-perrott F. A. 1992. Tropical wetland sources. Nature 355: 23–24.CrossRefGoogle Scholar
  57. Street-Perrott F. A. 1993. Ancient tropical methane. Nature 366: 411–412.CrossRefGoogle Scholar
  58. Schulz M. H. and Berk W. V. 2009. Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part II: Retracing gas generation and filling history by mass balancing of organic carbon conversion applying hydrogeochemical modeling. Marine Petrology and Geology doi:10.1016/j.marpetgeo. 2008.12.003.Google Scholar
  59. Thompson A., Stewart R., Owens M., et al. 1989. Sensitivity of tropospheric oxidants to global chemical and climate change. Atmospheric Environment 23: 519–532.CrossRefGoogle Scholar
  60. Thompson L. G., Mosley-Thompson E., Bolzan J., et al. 1985. A 1500-year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 229: 971–973.CrossRefGoogle Scholar
  61. Thompson L. G., Mosley-Thompson E., Davis M., et al. 1989. Holocene-late Pleistocene climatic ice core records from Qinghai-Tibetan plateau. Science 246: 474–477.CrossRefGoogle Scholar
  62. Thompson, L. G. and Mosley-Thompson E. 1990. Glacial Stage ice core records from the subtropical Dunde ice cap, China. Annual Glaciology 14: 288–297.Google Scholar
  63. Thompson L. G., Mosley-Thompson E., Davis M., et al. 1995. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269: 46–50.CrossRefGoogle Scholar
  64. Thompson L. G., YAO T., Davis M., et al. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276: 1821–1825.CrossRefGoogle Scholar
  65. Thompson L. G., Davis M., Mosley-Thompson E., et al. 1998. A 25,000 year climate history from Bolivian ice core. Science 282: 1858–1864.CrossRefGoogle Scholar
  66. Thompson L. G., YAO T. and Mosley-Thompson E. 2000. A High-resolution Millennial Record of the south Asian monsoon from Himalayan Ice Cores. Science 289: 1916–1919.CrossRefGoogle Scholar
  67. WANG N., YAO T., Thompson L. G., et al. 2002. Indian monsoon and North Atlantic Oscillation signals reflected by Cl- and Na+ in a shallow ice core from the Dasuopu Glacier, Xixiabangma, Himalayas. Annual Glaciology 35: 273–277.CrossRefGoogle Scholar
  68. XU B., YAO T., TIAN L., et al. 1999a. Variation of CH4 concentrations recorded in Dunde ice core bubbles. Chinese Science Bulletin 44(4): 383–384.CrossRefGoogle Scholar
  69. XU B. and YAO T. 1999b. Enclosure of air in the firn at 7100m altitude at Dasuopu Glacier, Journal of Glaciology and Geocryology 21(4): 380–384.Google Scholar
  70. YAO T., SHI Y. and Thompson L. G. 1997a. High resolution record of paleoclimate since the little ice age from the Tibetan ice cores. Quaternary International 37: 19–23.CrossRefGoogle Scholar
  71. YAO T., Thompson L. G., SHI Y., et al. 1997b. Climate variation since the last interglaciation recorded in the Guliya ice core. Science in China, Series D 40(6): 662–668.Google Scholar
  72. YAO, T., DUAN, K., XU, B., WANG, N., PU, J., KANG, S., QIN, X. and Thompson, L. G. 2002. Temperature and methane changes over the past 1000 years recorded in Dasuopu Glacier (central Himalaya) ice core. Annuals of Glaciology 35: 379–383.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Jiule Li
    • 1
    Email author
  • Baiqing Xu
    • 1
  • Tandong Yao
    • 1
    • 2
  • Ninglian Wang
    • 2
  • MacClune Ken
    • 3
  1. 1.Laboratory of Tibetan Environment Changes and Land Surface ProcessesChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Cryospheric ScienceChinese Academy of SciencesLanzhouChina
  3. 3.Stable Isotope Laboratory, Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulder, ColoradoUSA

Personalised recommendations