Skip to main content
Log in

Cohesive strength and seismogenic stress pattern along the active basement faults of the Precordillera-Sierras Pampeanas ranges, western Argentina: An experimental analysis by means of numerical model

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recognize the seismogenic stress state along the fold-and-thrust belt of the Precordillera-Sierras Pampeanas ranges of western Argentina. A plane strain model with nine experiments was presented here to examine the fault strength with two major rock phyical properties: cohesion and angle of internal friction. Mohr-Coulomb failure criterion with bulk rock properties were applied to analyse faults. The stress field at any point of the model was assumed to be comprised of gravitational and tectonic components. The analysis was focused to recognize the seismogenic shear strain concentrated in the internal-cristaline domain of the orogene shown by the modeling. Modeling results are presented in terms of four parameters, i. e., (i) distributions, orientations, and magnitudes of principal stresses (σ1 and σ3), (ii) displacement vector, (iii) strain distribution, and (iv) maximum shear stress (τ max ) contour line within the model. The simulation results show that the compressive stress is distributed in and around the fault systems. The overall orientation of σ1 is in horizontal directions, although some stress reorientations do occur within weaker parts, especially subsequent to the faults. A large-scale shear stress is accumulating along the active faults of Tapias-Villicum Fault (TVF), Salinas-Berros Fault (SBF), Ampacama-Niquizanga Fault (ANF) and Las Charas Fault (CF), which could act as local stress and strain modulators to localize the earthquakes occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmendinger, R.W., Figueroa, D., Synder, D., Beer, J., Mpodozis, C, and Isacks, L.B. 1990. Foreland Shortening and Crustal Balancing in the Andes at 30°S latitude. Tectonics 9: 789–809.

    Article  Google Scholar 

  • Alonso, J.L., Gallastegui, J., Garcia-Sansegundo, J., Farias, P., Rodriguez Fernandez, L.R., Ramos, V.A. 2008. Extensional Tectonics and Gravitational Collapse in an Ordovician Passive Margin: The Western Argentine Precordillera. Gondwana Research 13: 204–215.

    Article  Google Scholar 

  • Assumpcao, M. 1992. The Regional Intraplate Stress Field in South America. Journal of Geophysical Research 97: 11889–11903.

    Article  Google Scholar 

  • Bos, B., Peach, C.J. and Spiers, C.J. 2000. Slip Behavior of Simulated Gouge-bearing Faults under Conditions Favoring Pressure Solution. Journal of Geophysical Research 105: 16699–16717.

    Article  Google Scholar 

  • Bourne, S.J., England, P.C., Parson, B. 1998. The Motion of Crustal Blocks Driven byFlow of the Lower Lithosphere and Implications for Slip Rates of Continental Strike-slip Faults. Nature 39: 655–659.

    Article  Google Scholar 

  • Canimos, R., Cingolani, C.A., Herve F., and Linares, E. 1982. Geochronology of the Pre-Andean Metamorphism and Magmatism in the Andean Cordillera between Latitude 30° and 36° S. Earth Science Review 3: 333–352.

    Google Scholar 

  • Cahill, T., and Isacks, B. 1992, Seismicity and Shape of the Subducted Nazca Plate. J. Geophys. Res., 97: 17503–17529.

    Article  Google Scholar 

  • Chester, F.M., Evans, J.P., and Biegel, R.L. 1993. Internal Structure and Weakening Mechanisms of the San Andreas Fault. Journal of Geophysical Research 98: 771–786.

    Article  Google Scholar 

  • Chester, F.M., and Chester., J.S. 1998. Ultracataclasite Structure and Friction Processes of the San Andreas Fault. Tectonophysics 295: 199–221.

    Article  Google Scholar 

  • Chester, F. M., Chester, J. S., Kirschner, D. L., Schulz, S. E., and Evans, J. P. 2004. Structure of Large-displacement, Strikeslip Fault Zones in the Brittle continental crust. In: Rheology and Deformation in the Lithosphere at Continental Margins, Edited by Karner, G. D., B. Taylor, N. W. Driscoll, and D. L. Kohlstedt, Columbia University Press, New York.

    Google Scholar 

  • Chester, J.S., and Fletcher, R.C. 1997. Stress Distribution and Failure in Anisotropic Rock near a Bend on a Weak Fault. Journal of Geophysical Research 102: 693–708.

    Article  Google Scholar 

  • Clark Jr., S. P. 1966. Handbook of Physical Constants. Geol. Soc. Am. Mem., 97, 587p.

  • Cristallini, E.O. and Ramos, V.A. 2000. Thick-skinned and Thin-skinned Thrusting in the La Ramada Fold and Thrust Belt: Crustal Evolution of the High Andes of San Juan, Argentina (32°SL). Tectonophysics 317: 205–235.

    Article  Google Scholar 

  • Christensen, N.I. 1996. Poison’s Rratio and Crustal Seismology. Journal of Geophysical Research 101:3139–3156.

    Article  Google Scholar 

  • Corredor F. 2003. Eastward Extent of the Late Eocene-Early Oligocene onset of Deformation across the northern Andes: Constraints from the northern Portion of the Eastern Cordillera Fold Belt, Colombia. Journal of South American Earth Sciences 16: 445–457.

    Article  Google Scholar 

  • Cox, S.F., and Paterson, M.S. 1991. Experimental Dissolution-Precipitation Creep in Quartz Aggregates at High-Ttemperatures, Geophys. Res. Lett., 18: 1401–1404.

    Article  Google Scholar 

  • Duerto L., Escalona A., and Mann P. 2006. Deep Structure of the Merida Andes and Sierra de Perija Mountain Fronts, Maracaibo Basin, Venezuela. AAPG Bulletin 90: 505–528.

    Article  Google Scholar 

  • Fisher, Q.J., and Knipe, R.J. 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 18: 1063–1081.

    Article  Google Scholar 

  • Graeber, F. M., and Asch, G. 1999. Three-dimensional Models of P Wave Velocity and P-to-S Velocity Ratio in the South Central Andes by Simultaneous Inversion of Local Earthquake Data. Journal of Geophysical Research 104: 20237–20256.

    Article  Google Scholar 

  • Gutscher, M.A., Malavieille, J., Lallemand, S., and Collot, J.Y. 1999. Tectonic Segmentation of the North Andean Margin: Impact of the Carnegie Ridge Collision. Earth and Planetary Science Letters 168: 255–270.

    Article  Google Scholar 

  • Hayashi D. 2008. Theoretical Basis of FE Simulation Software Pakage. Bull. Fac. Sci. Univ. Ryukyus 85: 81–95.

    Google Scholar 

  • Heimpel, M. 1997. Critical Behaviour and the Evolution of Fault Strength during Earthquake Cycles. Nature 388: 865–868.

    Article  Google Scholar 

  • Introcaso, A., Pacino, M. C., and Fraga, H. 1992. Gravity, Isostasy and Andean Crustal Shortening between Latitudes 30 and 35°S. Tectonophysics 205: 31–48.

    Article  Google Scholar 

  • Islam, M.R., and Hayashi, D. 2008a. Numerical Modeling of Neotectonic Stress Field and Crustal Deformation around Basement Faults of the Patagonian Orocline, Southernmost Andes. The 3rd COE-21 International Symposium, MISASA-III “Origin, Evolution and Dynamics of the Earth” in March 21–23, 2008, Okayama University, Japan. Abstract vol. 165p.

    Google Scholar 

  • Islam, M.R., and Hayashi, D. 2008b. Extensional Stresses in the Fold-and-thrust Belt of the Southernmost Andes. Extended abstract. Bullettino di Geofisica Teorica ed Applicata 49: 223–228.

    Google Scholar 

  • Islam, M.R., Hayashi, D., and Kamruzzaman, A.B.M. 2009. Finite Element Modeling of Stress Distributions and Problems for Multi-slice Longwall Mining in Bangladesh, with special reference to the Barapukuria Coal Mine. International Journal of Coal Geology 78: 91–109.

    Article  Google Scholar 

  • Islam, M.R., and Hayashi, D. 2009. Extensional Stresses in the Colombian Eastern Cordillera Fold-and-thrust Belt, Northern Andes: Insights from 2D Finite Element Modeling. Geologica Acta 7: 333–350.

    Google Scholar 

  • Islam, M.R. 2009. Origin of the Regional Stress Field along the Liquine-Ofqui Fault Zone (LOFZ), Southern Chilean Andes: by Means of FE Simulation. Journal of Mountain Science 6: 1–13.

    Article  Google Scholar 

  • Jordan, T.E. and Allmendinger, R.W., Damanti, J., and Drake, R. 1993. Chronology of Motion in a Complete Thrust Belt: the Precordillera, 30°-31°S, Andes Mountains. Journal of Geology 101: 133–156.

    Article  Google Scholar 

  • Jordan T. E., Isacks, B. L., Allmedinger, R. W., Brewer, J. A., Ramos, V. A., Ando, C. J. 1983, Andean Tectonic Related to Geometry of Subducted Nazca Plate. Geol. Stud. of American Bull. 94: 341–361.

    Article  Google Scholar 

  • Kley, J., Monaldi, C.R., and Salfity, J. 1999, Along-strike Segmentation of the Andean Foreland: Causes and Consequences. Tectonophysics 301: 75–94.

    Article  Google Scholar 

  • Klotz, J., Khazaradze, G., Angermann, D., Reigber, C., Perdomo, R., Cifuentes, O. 2001. Earthquake Cycle Dominates Contemporary Crustal Deformation in the Central and Southern Andes. Earth and Planetary Science Letters 193: 437–446.

    Article  Google Scholar 

  • LIU, Z. and Bird, P. 2002. Finite Element Modeling of Neotectonics of New Zealand. Journal of Geophysical Research 107(B12): 2328, doi:10.1029/2001JB001075.

    Article  Google Scholar 

  • Meijer, P.T., and Wortel, M.J.R. 1992. The Dynamics of Motion of the South American Plate. Journal of Geophysical Research 97: 11915–11931.

    Article  Google Scholar 

  • Melosh H. J. and Williams C. A. 1989. Mechanics of Graben Formation in Crustal Rocks: A Finite Element Analysis. Journal of Geophysical Research 94: 13961–13973.

    Article  Google Scholar 

  • Mercier, J. L., Sebrier, M., Lavenu, A., Cabrera, J., Bellier, O., Dumont, J. F., Machare, A. J. 1992. Changes in the Tectonic Regime above a Subduction Zone of Andean Type: The Andes of Peru and Bolivia during the Pliocene-Pleistocene. Journal of Geophysical Research 97: 11945–11982.

    Article  Google Scholar 

  • Pérez, D.J., 2001. Tectonic and Unroofing History of Neogene Manantiales Foreland Basin Deposits, Cordillera Frontal (32°30′S), San Juan Province, Argentina. Journal of South American Earth Sciences 14: 693–705.

    Article  Google Scholar 

  • Pope, D. and Willett, S. D. 1998. A Thermo-mechanical Model for the Formation of the Central Andes-Altiplano of South America. Geology 26: 511–514.

    Article  Google Scholar 

  • Ramos, V. A., Cegarra, M., and Cristallini, E. O. 1996. Cenozoic Tectonics of the High Andes of West-Central Argentina (30–36°S latitude). Tectonophysics 259: 185–200.

    Article  Google Scholar 

  • Regnier, M., Chatelian, J.L., Smalley, R. J., Chiu. J.M., Isacks, B.L., Araujo, M. 1992. Seismotectonics of Sierra Pie de Palo: A Basement Block Uplift in the Andean Foreland of Argentina. Bulletin of Seismological Society of America 82: 2549–2571.

    Google Scholar 

  • Richardson, R.M. and Coblentz, D.D. 1994. Stress Modeling in the Andes: Constraints on the South American intraplate Stress Magnitudes. Journal of Geophysical Research 99: 22015–22025.

    Article  Google Scholar 

  • Sarmiento R. L. F., Van Wess J. D., Cloetingh S. 2006. Mesozoic Transextensional Basin History of the Eastern Cordillera, Colombian Andes: Inferences from Tectonic Models. Journal of South American Earth Sciences 21: 383–411.

    Article  Google Scholar 

  • Siame, L. L., Bellier, O., Sebrier, M., Araujo, M. 2005. Deformation Partitioning in Flat Subduction Setting: Case of the Andean Foreland of Western Argentina (28°S-33°S). Tectonics 24, TC5003, doi:10.1029/2005TC001787.

    Article  Google Scholar 

  • Siame, L. L., Bellier, O., Sebrier, M., Bourles, D.M., Leturmy, P., Perez M., and Araujo, M. 2002. Seismic Hazard Reappraisal from Combined Structural Geology, Geomorphology, and Cosmic Ray Exposure Dating Analyses: The Eastern Precordillera Thrust System (NW Argentina). Geophysical Journal International 150: 241–260.

    Article  Google Scholar 

  • Sibson, R.H. 1992. Implications of Fault-valve Behaviour for Rupture Nucleation and Recurrence. Tectonophysics 211: 283–293.

    Article  Google Scholar 

  • Smalley, R.J., Pujol, J., Regnier., M., Chiu. J.M., Chatelian, J.L., Isacks, B.L., Araujo, M., and Puebla, N. 1993. Basement Seismicity beneath the Andean Precordillera Thin-skinned Thrust Belt and Implication for Crustal and Lithospheric Behavior. Tectonics 12: 63–76.

    Article  Google Scholar 

  • Tassara, A., Gotze, H, J., Schmidt, S., Hackney, R. 2006. Three-dimensional Density Model of the Nazca Plate and the Andean Continental Margin. Journal of Geophysica Research 111: B09404, doi: 10.1029/2005JB003976.

    Article  Google Scholar 

  • Tenthorey, E., and Cox, F.C. 2006. Cohesive Strengthening of Fault Zones during the interseismic period: An experimental study. Journal of Geophysical Research 111: B09202, doi:10.1029/2005JB004122.

    Article  Google Scholar 

  • Timoshenko, S. P., Goodier, J. N. 1970. Theory of Elasticity. McGraw Hill Book Company. London, Third edition, p 567, international edition, p 488.

    Google Scholar 

  • Walcott, R.I. 1998. Models of Oblique Compression: Late Cenozoic Tectonics of the South Island of New Zealand. Review of Geophysics 36: 1–26.

    Article  Google Scholar 

  • Wdowinski, S. and Bock, Y. 1994. The Evolution of Deformation and Topography of High Elevated Plateaus, Model.1. Numerical Analysis, and General Results. Model. 2, Application to the central Andes. Journal of Geophysical Research 99: 7103–7130.

    Article  Google Scholar 

  • Willett, S. D. 1999. Rheological Dependence of Extension in Wedge Models of Convergent Orogens. Tectonophysics 305: 419–435.

    Article  Google Scholar 

  • Yamashita, F., Fukuyama, E., Omura, K. 2004. Estimation of Fault Strength: Reconstruction of Stress Before the 1995 Kobe Earthquake. Science 306: 261–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rafiqul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.R. Cohesive strength and seismogenic stress pattern along the active basement faults of the Precordillera-Sierras Pampeanas ranges, western Argentina: An experimental analysis by means of numerical model. J. Mt. Sci. 6, 331–345 (2009). https://doi.org/10.1007/s11629-009-1013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-009-1013-7

Keywords

Navigation