Skip to main content

Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada (Gaertn.) Roxb

Abstract

Scaevola taccada (Gaertn.) Roxb. is a hemi-sclerophyllous littoral shrub of the family Goodeniaceae. It is a salt-tolerant plant and used in soil reclamation and coastal landscaping programs to control beach erosion. The present article reports a reproducible in vitro regeneration system using meta-topolin (mT) through liquid medium employing nodal segment cultures. The highest number of axillary shoots (5.8 ± 0.29) was differentiated on Murashige and Skoog’s (MS) medium containing meta-topolin (1.5 mg L−1). The amplification of shoots (49.8 ± 0.37) and fresh growth was achieved by recurrent subcultures on liquid MS medium supplemented with 0.25 mg L−1 mT and 0.15 mg L−1 indole-3-acetic acid (IAA) in the presence of additives (50 mg L−1 ascorbic acid + 25 mg L−1 citric acid, adenine sulphate and l-arginine). Rooting and acclimatization was simultaneously achieved using concurrent ex vitro rooting and acclimatization (CEVRA) technique by pulse treating the shoot base with 300 mg L−1 IBA for 5 min. The in vitro developed shoots represented a maximum percentage (100%) of rooting in autoclaved soilrite in a greenhouse. After 2 mo, the plantlets were established in the field with cent percentage survival success. The genetic fidelity analysis using inter simple sequence repeats (ISSR) DNA molecular markers developed maximum of 55 monomorphic bands and revealed the genetic homogeneity of in vitro regenerated plantlets with the mother plant.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.

References

  • Ahmad A, Anis M (2019) Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: a potential drug-yielding tree. J Plant Growth Regul 38:1007–1016

    CAS  Article  Google Scholar 

  • Alam J, Ali I (2010) Contribution to the red list of the plants of Pakistan. Pak J Bot 42:2967–2971

    Google Scholar 

  • Alatar AA, Faisal M, Hegazy AK, Alwathnani HA, Okla MK (2015) Clonal in vitro multiplication of grey mangrove and assessment of genetic fidelity using single primer amplification reaction (SPAR) methods. Biotechnol Biotechnol Equip 29:1069–1074. https://doi.org/10.1080/13102818.2015.1063454

    CAS  Article  Google Scholar 

  • Amoo SO, Aremu AO, Moyo M, Sunmonu TO, Plihalova L, Dolezal K, van Staden J (2015) Physiological and biochemical effects of a tetrahydropyranyl-substituted meta-topolin in micropropagated Merwilla plumbea. Plant Cell Tissue Organ Cult 121:579–590. https://doi.org/10.1007/s11240-015-0728-0

    CAS  Article  Google Scholar 

  • Anonymous (2003) Guidelines for application of IUCN. Gland, Weitzerland and Cambridge

    Google Scholar 

  • Aremu AO, Bairu MW, Szucova L, Dolezal K, Finnie JF, Van Staden J (2012) Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol Plant 34:2265–2273

    CAS  Article  Google Scholar 

  • Asayesh ZM, Vahdati K, Aliniaeifard S (2017) Investigation of physiological components involved in low water conservation capacity of in vitro walnut plants. Sci Hortic 224:1–7

    Article  CAS  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802

    CAS  PubMed  Article  Google Scholar 

  • Bairu MW, Kane ME (2011) Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul 63:101–103

    CAS  Article  Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90:15–23

    CAS  Article  Google Scholar 

  • Batkova P, Pospisilova J, Synkova H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant 52:413–422

    CAS  Article  Google Scholar 

  • Bhattacharyya P, Kumaria S, Tandon P (2016) High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. S Afr J Bot 104:232–243

    CAS  Article  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, New York, pp 245–274

    Book  Google Scholar 

  • Botanic Gardens Conservation International (BGCI). Scaevola taccada, www.tools.bgci.org. Accessed on 13 July 2020

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1199–1205. https://doi.org/10.1007/s10529-010-0290-0

    CAS  Article  PubMed  Google Scholar 

  • Chandran A, Arunachalam G (2015) Evaluation of in vivo anticancer activity of Scaevola taccada Roxb against Ehrlich ascites carcinoma in Swiss albino mice. J Pharm Sci Res 7:626–632

    CAS  Google Scholar 

  • Chauhan RD, Taylor NJ (2018) Meta-topolin stimulates de novo shoot organogenesis and plant regeneration in cassava. Plant Cell Tissue Organ Cult 13:219–224

    Article  CAS  Google Scholar 

  • Chhajer S, Kalia RK (2017) Seasonal and micro-environmental factors controlling clonal propagation of mature trees of marwar teak [Tecomella undulata (Sm.) Seem]. Acta Physiol Plant 39(1–15):60. https://doi.org/10.1007/s11738-017-2364-2

    CAS  Article  Google Scholar 

  • Choudhary D, Rai MK, Shekhawat NS, Kataria V (2020) In vitro propagation of Farsetia macrantha Blatt. & Hallb.: an endemic and threatened plant of Indian Thar Desert. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01876-5

  • DaCosta-Cottam M, Olynik J, Blumenthal J, Godbeer KD, Gibb J, Bothwell J, Burton FJ, Bradley PE, Band A, Austin T, Bush P, Johnson BJ, Hurlston L, Bishop L, McCoy C, Parsons G, Kirkconnell J, Halford S, Ebanks-Petrie G (2009) Cayman Islands National Biodiversity Action Plan 2009. Government. Department of Environment, Cayman Islands

    Google Scholar 

  • Daly A, Hennessy C (2007) Mycosphaerella leaf spot of Scaevola taccada. Agnote - North Territory Aust I68:2

    Google Scholar 

  • Dimitrova N, Nacheva L, Berova M (2016) Effect of meta-Topolin on the shoot multiplication of pear rootstock OHF-333 (Pyrus communis L.). Acta Sci Pol Hort Cultus 15:43–53

    Google Scholar 

  • Elayaraja D, Subramanyam K, Vasudevan V, Sathish S, Kasthurirengan S, Ganapathi A, Manickavasagam M (2019) Meta-Topolin (mT) enhances the in vitro regeneration frequency of Sesamum indicus (L.). Biocatal Agric Biotechnol 21:101320

    Article  Google Scholar 

  • Erisen S, Kurt-Gur G, Servi H (2020) In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Ind Crop Prod 157. https://doi.org/10.1016/j.indcrop.2020.112892

  • Gentile A, Frattarelli A, Nota P, Condello E, Caboni E (2017) The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell Tissue Organ Cult 128:693–703. https://doi.org/10.1007/s11240-016-1150-y

    CAS  Article  Google Scholar 

  • George EF (2008) Plant tissue culture procedure – background. In: George EF, Hall MA, De KlerK GJ (eds) Plant Propagation by Tissue Culture, 3rd edn. Springer Dordrecht, Netherlands, pp 1–28

  • Greenwell ZL, Ruter JM (2018) Effect of glutamine and arginine on growth of Hibiscus moscheutosin vitro”. Ornam Hortic 24:393–399

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro cultured plants. Sci Hortic 108:105–120

    CAS  Article  Google Scholar 

  • Howarth DG, Gustafsson MHG, Baum DA, Motley TJ (2003) Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific basin and colonization of the Hawaiian islands. Am J Bot 90:915–923

    PubMed  Article  Google Scholar 

  • Jogam P, Sandhya D, Shekhawat MS, Alok A, Manokari M, Abbagani S, Allini VR (2020) Genetic stability analysis using DNA barcoding and molecular markers and foliar micro-morphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Ind Crop Prod 151:112476. https://doi.org/10.1016/j.indcrop.2020.112476

    CAS  Article  Google Scholar 

  • Khanam MN, Javed SB, Anis M, Alatar AA (2019) meta-Topolin induced in vitro regeneration and metabolic profiling in Allamanda cathartica L. Ind Crop Prod:145. https://doi.org/10.1016/j.indcrop.2019.111944

  • Khare CP (2007) Indian medicinal plant an illustrated dictionary. Springer, New Delhi, p 588

    Book  Google Scholar 

  • Klerk GJD, Keppel M, Brugge JT, Meekes H (1995) Timing of the phases in adventitious root formation in apple microcuttings. J Exp Bot 46:965–972

    Article  Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucharska D, Orlikowska T, Maciorowski R, Kunka M, Wokcik D, Pluta S (2020) Application of meta-Topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci Hortic 272:109529. https://doi.org/10.1016/j.scienta.2020.109529

    CAS  Article  Google Scholar 

  • Kumar A, Mishra P, Baskaran K, Shukla AK, Shasany AK, Sundaresan V (2016) Higher efficiency of ISSR markers over plastid psbA-trnH region in resolving taxonomical status of genus Ocimum L. Ecol Evol 6:7671–7682

    PubMed  PubMed Central  Article  Google Scholar 

  • Lata H, Chandra S, Khan IA, Elsohly MA (2016) In vitro propagation of Cannabis sativa L. and evaluation of regenerated plants for genetic fidelity and cannabinoids content for quality assurance. Methods Mol Biol 1391:275–288

    CAS  PubMed  Article  Google Scholar 

  • Li M, Liu HX, Huang CS, Lu QM (2015) Main volatile chemical constituents and antimicrobial activity of Scaevola sericea leaves. Technol Dev Chem Ind 44:10–14

    Google Scholar 

  • Liang H, Xiong Y, Guo B, Yan H, Jian S, Ren H, Zhang X, Li Y, Zeng S, Wu K, Zheng F, Teixeira da Silva JA, Xiong Y, Ma G (2020) Shoot organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea. Sci Rep. https://doi.org/10.1038/s41598-020-68084-1

  • Locher CP, Burch MT, Mower HF (1995) Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. J Ethnopharmacol 49:23–32

    CAS  PubMed  Article  Google Scholar 

  • Locher CP, Witvrouw M, de Bethune MP (1996) Antiviral activity of Hawaiian medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2:259–264

    CAS  PubMed  Article  Google Scholar 

  • Longmore RB, Kerr PG (1997) Prickly fanfare an Aboriginal medicine? Australian plants, their commercial potential. 2. Pharmaceutical investigation of Scaevola spinescens. Aust. Plants 19:119–122

    Google Scholar 

  • Lu SY (1996) New cultivars from the native plants of Taiwan. Taiwan J For Sci 11:109–112

    Google Scholar 

  • Machado JS, Degenhardt J, Maia FR, Quoirin M (2020) Micropropagation of Campomanesia xanthocarpa O. Berg (Myrtaceae), a medicinal tree from the Brazilian Atlantic forest. Trees. https://doi.org/10.1007/s00468-020-01958-z

  • Magyar-Tabori K, Dobranszki J, Hudak I (2011) Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci Hortic 129:910–913. https://doi.org/10.1016/j.scienta.2011.05.011

    CAS  Article  Google Scholar 

  • Manokari M, Priyadharshini S, Jogam P, Shekhawat MS (2020a) Application of seismo-mechanical stress in attenuation of in vitro induced abnormalities in Scaevola taccada (Gaertn.) Roxb. Biocatal Agric Biotechnol 29:101821. https://doi.org/10.1016/j.bcab.2020.101821

    Article  Google Scholar 

  • Manokari M, Priyadharshini S, Shekhawat MS (2020b) Micropropagation of sea grape Coccoloba uvifera (L.) L. South Afr J Bot. https://doi.org/10.1016/j.sajb.2020.04.028

  • Martínez-Estrada E, Caamal-Velázquez JH, Salinas-Ruíz J, Bello-Bello JJ (2017) Assessment of somaclonal variation during sugarcane micropropagation in temporary immersion bioreactors by intersimple sequence repeat (ISSR) markers. In Vitro Cell Dev Biol Plant 53(6):553–560

    Article  CAS  Google Scholar 

  • McConnell J (1996) Release of new Scaevola sericea cultivars. Hortsci 41:1041–1041

    Article  Google Scholar 

  • Mishra MK, Pandey S, Misra P, Niranjan A (2020) In vitro propagation, genetic stability and alkaloids analysis of acclimatized plantlets of Thalictrum foliolosum. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01862-x

  • Mngomba SA, Sileshi G, du Toit ES, Akinnifesi FK (2012) Efficacy and utilization of fungicides and other antibiotics for aseptic plant cultures. In: Dhanasekaran D (ed) Fungicides for plant and animal diseases. InTech, ISBN: 978–953–307-804-5, pp 245–254

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Genetic homogeneity of in vitro raised plants of grapevine cv. Crimson seedless revealed by ISSR and microsatellite markers. S Afr J Bot 78:302–306

    CAS  Article  Google Scholar 

  • Panwar D, Patel AK, Shekhawat NS (2018) An improvised shoot amplification and ex vitro rooting method for offsite propagation of Tinospora cordifolia (Willd.) Miers: a multi-valued medicinal climber. Indian J Plant Physiol 23:169–178. https://doi.org/10.1007/s40502-018-0350-3

    CAS  Article  Google Scholar 

  • Patel AK, Lodha D, Shekhawat NS (2020) An improved micropropagation protocol for the ex situ conservation of Mitragyna parvifolia (Roxb.) Korth. (Rubiaceae): an endangered tree of pharmaceutical importance. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-020-10089-6

  • Phulwaria M, Rai MK, Patel AK, Kataria V, Shekhawat NS (2012) A genetically stable rooting protocol for propagating a threatened medicinal plant-Celastrus paniculatus. AoB Plants. https://doi.org/10.1093/aobpla/pls054

  • Prajapati ND, Purohit SS, Sharma AK, Kumar K (2003) A hand book of medicinal plants - a complete source book, 1st edn. Agrobios, Jodhpur, p 463

    Google Scholar 

  • Rai MK, Phulwaria M, Harish Gupta AK, Shekhawat NS, Jaiswal U (2012) Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tissue Organ Cult 111:259–264. https://doi.org/10.1007/s11240-012-0190-1

    CAS  Article  Google Scholar 

  • Rawal K, Keharia H (2019) Prevention of fungal contamination in plant tissue culture using cyclic lipopeptides secreted by Bacillus amulolique-faciens AB30a. Plant Tissue Cult Biotechnol 29:111–119

    Article  Google Scholar 

  • Ray SS, Ali N (2018) Biotic contamination and possible ways of sterilization: a review with reference to Bamboo micropropagation. Braz Arch Biol Technol 59:1–12. https://doi.org/10.1590/1678-4324-2016160485

    CAS  Article  Google Scholar 

  • Regalado JJ, Tossi VE, Burrieza HP, Encina CL, Pitta-Alvarez SI (2020) Micropropagation protocol for coastal quinoa. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-020-01840-3

  • Rohela GK, Jogam P, Bylla P, Reuben C (2019) Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: an endangered medicinal plant. Biomed Res Int. https://doi.org/10.1155/2019/3698742

  • Ruangrungsi N, Mangkhla KT (2004) Thai herbs, 1st edn. Than Printing Company Limited, Thailand, p 259

    Google Scholar 

  • Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan-woody plants. Heibonsha, Tokyo

    Google Scholar 

  • Sato M, Hosokawa M, Doi M (2011) Somaclonal variation is induced de novo via the tissue culture process: a study quantifying mutated cells in Saintpaulia. PLoS ONE 6:e23541. https://doi.org/10.1371/journal.pone.0023541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sharma U, Kataria V, Shekhawat NS (2017) In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam.: a leguminous tree with medicinal values. Phyiol Mol Biol Plants 23:969–977

    CAS  Article  Google Scholar 

  • Shekhawat MS, Kannan N, Manokari M, Priyadharshini S (2020) Regeneration of shoots via direct somatic embryogenesis from the leaf surface of Scaevola taccada (Gaertn.) Roxb. – a climate resilient species of coastal areas. S Afr J Bot. https://doi.org/10.1016/j.sajb.2020.05.006

  • Shekhawat MS, Manokari M (2016) In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiol Mol Biol Plants 22:131–142

    PubMed  PubMed Central  Article  Google Scholar 

  • Singh N, Kumaria S (2020) A combinational phytomolecular-mediated assessment in micropropagated plantlets of Coelogyne ovalis Lindl.: a horticultural and medicinal Orchid. Proc Natl Acad Sci India Sect B Biol Sci 90:455–466. https://doi.org/10.1007/s40011-019-01118-5

    CAS  Article  Google Scholar 

  • Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146. https://doi.org/10.1007/s10725-010-9531-4

    CAS  Article  Google Scholar 

  • Strnad M, Hanus J, Vanek T, Kaminek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench, cv. Robusta). Phytochemistry 45:213–218

    CAS  Article  Google Scholar 

  • Suthiwong J, Thongsri Y, Yenjai CA (2017) new furanocoumarin from the fruits of Scaevola taccada and antifungal activity against Pythium insidiosum. Nat Prod Lett 31:453–459

    CAS  Article  Google Scholar 

  • Tan BYJ (1997) Fan flowers in horticulture. Aust Plants 19:112–117

    Google Scholar 

  • Tarkowska D, Dolezal K, Tarkowski P, Astot C, Holub J, Fuksova K, Schmulling T, Sandberg G, Strnad M (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/ frit-fast atom bombardment mass spectrometry. Physiol Plant 117:579–590

    CAS  PubMed  Article  Google Scholar 

  • Teklehaymanot T, Wannakrairoj S, Pipattanawong N (2010) Meta-topolin for pineapple shoot multiplication under three in vitro systems. Am Eurasian J Agric Environ Sci 7:157–162

    CAS  Google Scholar 

  • The Plant List (2020) Scaevola taccada (Gaertn.) Roxb. http://www.theplantlist.org/tpl1.1/record/tro-14600012. Accessed 17July 2020

  • Valero-Aracama C, Kane M, Wilson S, Philman N (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy- to acclimatize sea oats (Uniola paniculata L) genotypes. Plant Growth Regul 60:43–49

    CAS  Article  Google Scholar 

  • Van der Krieken WM, Breteler H, Visser MHM, Mavridou D (1993) The role of the conversion of IBA into IAA on root regeneration in apple: introduction of a test system. Plant Cell Rep 12:203–206

    PubMed  Article  Google Scholar 

  • Vijayakumar J, Ponmanickam P, Samuel P, Sudarmani DNP, Pandiarajan J (2017) Influence of meta-topolin on efficient plant regeneration via micropropagation and organogenesis of safflower (Carthamus tinctorius L.) cv. NARI-H-15. Am J Plant Sci 8:688–705

    CAS  Article  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297

    CAS  Article  Google Scholar 

  • Wohlrabe K, Hansel R (1977) Coumarins from Scaevola frutescens. Arch Pharm 310:972–974

    CAS  Article  Google Scholar 

  • Wojtania A (2010) Effect of meta-topolin on in vitro propagation of Pelargonium x hortorum and Pelargonium x hederaefolium cultivars. Acta Soc Bot Pol 79:101–106

    CAS  Article  Google Scholar 

  • Wrigley RJ, Fagg M (1998) Australian native plants. Reed Books, Australia, pp 16–20

    Google Scholar 

  • Yan H, Liang C, Yang L, Li Y (2010) In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiol Plant 32:115–120

    CAS  Article  Google Scholar 

Download references

Funding

Author MSS received financial support from the Science and Engineering Research Board, Department of Science and Technology, New Delhi, Government of India, as Extra Mural Research Project (EMR/2016/007795, dated 23-08-2017) provided to his laboratory.

Author information

Authors and Affiliations

Authors

Contributions

MSS, MM and PS: Conceptualization, investigation, methodology. MM and MSS: Writing the original draft. PJ and VK: Conceptualization, data curation and revision of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. Manokari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This research did not involve experiments with human or animal participants.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shekhawat, M.S., Priyadharshini, S., Jogam, P. et al. Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada (Gaertn.) Roxb. In Vitro Cell.Dev.Biol.-Plant 57, 296–306 (2021). https://doi.org/10.1007/s11627-020-10156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10156-y

Keywords

  • Concurrent ex vitro rooting and acclimatization
  • Genetic fidelity
  • Liquid medium
  • Meta-Topolin
  • Scaevola taccada