Skip to main content
Log in

Optimization of efficient direct organogenesis protocol for Punica granatum L. cv. Kandhari Kabuli from mature leaf explants

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Punica granatum L. is an important horticultural fruit crop with high medicinal and economic value. Its rising commercial demand necessitates the production of high-quality planting material. Here, we describe an efficient protocol for direct organogenesis in Punica granatum L. cv. Kandhari Kabuli from mature leaf explant. The optimized sterilization procedure for explant includes sequential treatment with 70% ethanol (0.75 min), 0.2% Bavistin (15 min), and 0.5% sodium hypochlorite (2 min), which resulted in 83% axenic cultures. The accumulation of phenolics was effectively controlled by subculturing of leaf explants three to four times at a regular interval of 24 h. The organogenic capability of leaf segments was investigated on full-strength Murashige and Skoog (MS) medium supplemented with different plant growth regulators (PGRs), including the cytokinins 6-benzylaminopurine (BAP) and thidiazuron (TDZ) alone or in combination with α-naphthaleneacetic acid (NAA). BAP promoted the greatest morphogenic response as compared to that from TDZ. However, the greatest frequency of shoot induction (43%) was achieved on MS medium supplemented with 10 μM BAP and 2.5 μM NAA under dark incubation for 2 wk. Furthermore, micro-shoot proliferation and elongation were achieved on multiplication medium consisting of MS medium supplemented with 9.0 μM BAP, 2.5 μM Kinetin (KN), and 0.5 μM gibberellic acid (GA3) up to the third subculturing. However, further subculturing resulted in vitrification. A hormone-free medium containing 300 mg L−1 activated charcoal (AC) was found to be effective to reduce vitrification and promote shoot multiplication. In vitro rooting was carried out on the ½ MS basal medium containing 500 mg L−1 AC using shoots from different subculture passages. Successive subculturing tends to have a positive effect on in vitro rooting and increased rooting up to 70.62%. Well-rooted plantlets were acclimatized successfully in the small plastic pots containing sterilized sand and later shifted to the soil. This optimized protocol can be routinely used for rapid large-scale propagation of pomegranate and is a prerequisite for trait improvement via genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2.
Figure 3.
figure 4.

Similar content being viewed by others

References

  • Amit K, Gupta AK, Harish RMK, Phulwaria M, Agarwal T, Shekhawat NS (2014) In vitro propagation, encapsulation, and genetic fidelity analysis of Terminalia arjuna: a cardioprotective medicinal tree. Appl Biochem Biotechnol 173:1481–1494

    Article  CAS  Google Scholar 

  • Aragão VPM, de Souza Ribeiro YR, Reis RS, Macedo AF, Floh EIS,Silveira V, Santa-Catarina C (2016) In vitro organogenesis of Cedrela fissilis Vell. (Meliaceae): the involvement of endogenous polyamines and carbohydrates on shoot development. Plant Cell Tiss Org Cult 124:611–620

  • Armas I, Pogrebnyak N, Raskin I (2017) A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods 13:1–9

    Article  CAS  Google Scholar 

  • Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33:1821–1829

    Article  CAS  Google Scholar 

  • Ayadi R, Hamrouni L, Hanana M, Bouzid S, Trifi M, Khouja M (2011) In vitro propagation and regeneration of an industrial plant kenaf (Hibiscus cannabinus L.). Ind Crop Prod 33:474–480

    Article  CAS  Google Scholar 

  • Ayala PG, Brugnoli EA, Luna CV, González AM, Pezzutti R, Sansberro PA (2019) Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation. Trees 33:1667–1678

    Article  CAS  Google Scholar 

  • Bassan MM, Mourão Filho FAA, Miyata LY, Mendes BMJ (2011) In vitro organogenesis from internodal segments of adult sweet orange plants. Pesqui Agropecu Bras 46:672–674

    Article  Google Scholar 

  • Bonyanpour A, Khosh-Khui M (2013) Callus induction and plant regeneration in Punica granatum L. nana from leaf explants. J Cent Eur Agric 14:928–936

    Article  Google Scholar 

  • Cocuzza GEM, Mazzeo G, Russo A, Giudice VL, Bella S (2016) Pomegranate arthropod pests and their management in the Mediterranean area. Phytoparasitica 44:393–409

    Article  CAS  Google Scholar 

  • Da Silva JAT, Rana TS, Narzary D, Verma N, Meshram DT, Ranade SA (2013) Pomegranate biology and biotechnology: a review. Sci Hortic-Amsterdam 160:85–107

    Article  CAS  Google Scholar 

  • Dangi B, Khurana-Kaul V, Kothari SL, Kachhwaha S (2014) Micropropagtion of Terminalia bellerica from nodal explants of mature tree and assessment of genetic fidelity using ISSR and RAPD markers. Physiol Mol Biol Plants 20:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepika R, Kanwar K (2010) In vitro regeneration of Punica granatum L. plants from different juvenile explants. J Fruit Ornamental Plant Res 18:5–22

    CAS  Google Scholar 

  • Desai P, Patil G, Dholiya B, Desai S, Patel F, Narayanan S (2018) Development of an efficient micropropagation protocol through axillary shoot proliferation for pomegranate variety ‘Bhagwa’. Ann Agrar Sci 16:444–450

    Article  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewir Y, Chakrabarty D, Hahn E, Paek K (2006) A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cell Dev Biol - Plant 42:291–297

    Article  CAS  Google Scholar 

  • Dewir YH, Naidoo Y, da Silva JAT (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Dinesh RM, Patel AK, Vibha J, Shekhawat S, Shekhawat N (2019) Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos 32:181–189

    Article  Google Scholar 

  • El-Agamy SZ, Mostafa RA, Shaaban MM, El-Mahdy MT (2009) In vitro propagation of Manfalouty and nab El-gamal pomegranate cultivars. Res J Agric Biol Sci 5:1169–1175

    CAS  Google Scholar 

  • Gao L, Bao M (2005) Direct adventitious bud induction and plant regeneration of Rosa hybrida samantha. Agric Sci China 4:101–105

    Google Scholar 

  • García-Angulo P, Villar I, Giner-Robles L, Centeno M (2018) In vitro regeneration of two Populus hybrid clones. The role of pectin domains in cell processes underlying shoot organogenesis induction. Biol Plant 62:763–774

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Micropropagation: uses and methods. Plant propagation by tissue culture: Springer: Dordrecht, The Netherlands, pp 29–64

  • Gharaghani A, Ghasemi Soloklui AA, Oraguzie N, Zare D (2017) Pollen source influences fruit quality, aril properties, and seed characteristics in pomegranate. Int J Fruit Sci 17:333–348

    Article  Google Scholar 

  • Golozan AB, Shekafandeh A (2010) Effects of plant growth regulators on pomegranate (Punica granatum L. cv. Rabbab) shoot proliferation and rooting. Adv Hortic Sci 24:207–211

    Google Scholar 

  • Goto S, Thakur RC, Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep 18:193–197

    Article  CAS  PubMed  Google Scholar 

  • Goyal P, Kachhwaha S, Kothari SL (2012) Micropropagation of Pithecellobium dulce (Roxb.) Benth - a multipurpose leguminous tree and assessment of genetic fidelity of micropropagated plants using molecular markers. Physiol Mol Biol Plants 18:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guranna P, Hoolageri HC (2017) Studies on establishment of aseptic culture in pomegranate cv. Bhagwa. Annu Res Rev Biol 21:1–7

    Article  Google Scholar 

  • Guranna, P, Hosamani, I, Sathyanarayana R., Hegde R, Hipparagi K (2018) Micropropagation in pomegranate (Punica granatum L.) cv. ‘Bhagwa’ through indirect organogenesis and assessment of genetic fidelity by RAPD marker. Biotechnol J Int 20:1–8

  • Han BH, Park BM (2008) In vitro micropropagation of Philodendron cannifolium. J Plant Biotechnol 35:203–208

    Article  Google Scholar 

  • Haque SM, Ghosh B (2013) Field evaluation and genetic stability assessment of regenerated plants produced via direct shoot organogenesis from leaf explant of an endangered ‘asthma plant’ (Tylophora indica) along with their in vitro conservation. Natl Acad Sci Lett 36:551–562

    Article  CAS  Google Scholar 

  • Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M, Alizadeh M (2018) Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments. J Genet Eng Biotechnol 16:175–180

    Article  PubMed  Google Scholar 

  • Huang J, Yin L, Yang X, Sun Z (2005) In vitro plant regeneration from the mature tissue of navel orange (Citrus sinensis L. Osbeck) by direct organogenesis. Agric Sci China 4:236–240

    Google Scholar 

  • Huang LC, Huang BL, Murashige T (1998) A micropropagation protocol for Cinnamomum camphora. In Vitro Cell Dev Biol - Plant 3:141–146

    Article  Google Scholar 

  • Islam A, Anuar N, Yaakob Z (2009) Effect of genotypes and pre-sowing treatments on seed germination behavior of Jatropha. Asian J Plant Sci 8:433–439

    Article  Google Scholar 

  • Ivanova M, Van Staden J (2011) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Org Cult 104:13–21

  • Jaidka K, Mehra P (1986) Morphogenesis in Punica granatum (pomegranate). Can J Bot 64:1644–1653

    Article  Google Scholar 

  • Johanningsmeier SD, Harris GK (2011) Pomegranate as a functional food and nutraceutical source. Annu Rev Food Sci Technol 2:181–201

    Article  CAS  PubMed  Google Scholar 

  • Kaji BV, Ershadi A, Tohidfar M (2013) In vitro propagation of two Iranian commercial pomegranates (Punica granatum L.) cvs. ‘Malas Saveh’ and ‘Yusef Khani’. Physiol Mol Biol Plant 19:597–603

    Article  CAS  Google Scholar 

  • Kalia RK, Arya S, Kalia S, Arya I (2007) Plantlet regeneration from fascicular buds of seedling shoot apices of Pinus roxburghii Sarg. Biol Plant 51:653–659

    Article  CAS  Google Scholar 

  • Kanwar K, Devi V, Sharma S, Soni M, Sharma D (2015) Effect of physiological age and growth regulators on micropropagation of Aloe vera followed by genetic stability assessment. Natl Acad Sci Lett 38:29–35

    Article  CAS  Google Scholar 

  • Kanwar K, Joseph J, Deepika R (2010) Comparison of in vitro regeneration pathways in Punica granatum L. Plant Cell Tiss Org Cult 100:199–207

  • Khateeb AW, Bahar E, Lahham J, Schroeder D, Hussein E (2013) Regeneration and assessment of genetic fidelity of the endangered tree Moringa peregrina (Forsk.) Fiori using Inter Simple Sequence Repeat (ISSR). Physiol Mol Biol Plants 19:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Arora PK, Brar J, Bhatia D, Kumar A (2019) Influence of explant collection period, antibrowning strategy and growth regulators composition on in vitro propagation of Bhagwa pomegranate. Indian J Hort 76:273–278

    Article  Google Scholar 

  • Liu M, Jiang F, Kong X, Tian J, Wu Z, Wu Z (2017) Effects of multiple factors on hyperhydricity of Allium sativum L. Sci Hort 21:285–296

    Article  CAS  Google Scholar 

  • Longtin R (2003) The pomegranate: nature's power fruit? J Natl Cancer Inst 95:346–348

    Article  PubMed  Google Scholar 

  • Luccioni LG, Oliverio KA, Yanovsky MJ, Boccalandro HE, Casal JJ (2002) Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiol 128:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Chaudhury R, Kalia RK (2005) Rapid in vitro multiplication and conservation of Garcinia indica: a tropical medicinal tree species. Sci Hort 106:539–553

    Article  Google Scholar 

  • Marín J, García E, Lorente P, Andreu P, Arbeloa A (2016) A novel approach for propagation of recalcitrant pistachio cultivars that side-steps rooting by ex vitro grafting of tissue cultured shoot tips. Plant Cell Tiss Org Cult 124:191–200

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murkute A, Patil S, Patil B (2002) Micropropagation in pomegranate, callus induction and differentiation. South Indian Hort 50:49–55

    Google Scholar 

  • Murkute A, Patil S, Singh S (2004) In vitro regeneration in pomegranate cv. Ganesh from mature trees. Indian J Hort 61:206–208

    Google Scholar 

  • Murkute AA, Patil S (2003) Exudation and browning in tissue culture of pomegranate. Agric Sci Digest 23:29–31

    Google Scholar 

  • Naik SK, Pattnaik S, Chand PK (1999) In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci Hort 79:175–183

    Article  CAS  Google Scholar 

  • Naik SK, Pattnaik S, Chand PK (2000) High frequency axillary shoot proliferation and plant regeneration from cotyledonary nodes of pomegranate (Punica granatum L.). Sci Hort 85:261–270

    Article  CAS  Google Scholar 

  • Nameth B, Dinka SJ, Chatfield SP, Morris A, English J, Lewis D, Oro R, Raizada MN (2013) The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling. Plant Cell Environ 36:68–86

    Article  CAS  PubMed  Google Scholar 

  • Omura M, Matsuta N, Moriguchi T, Kozaki I (1987) Adventitious shoot and plantlet formation from cultured pomegranate leaf explants. HortSci 22:133–134

    CAS  Google Scholar 

  • Parmar N, Kanwar K, Thakur AK (2013) Direct organogenesis in Punica granatum L. cv. Kandhari Kabuli from hypocotyl explants. Proc Natl Acad Sci India B 83:569–574

    Google Scholar 

  • Parmar N, Kanwar K, Thakur AK (2015) High efficiency plant regeneration from cotyledon explants of pomegranate (Punica granatum L.) cv. Kandhari Kabuli. Vegetos 28:160–165

    Article  Google Scholar 

  • Pathania M, Arora PK, Pathania S, Kumar A (2019) Studies on population dynamics and management of pomegranate aphid, Aphis punicae Passerini (Hemiptera: Aphididae) on pomegranate under semi-arid conditions of South-Western Punjab. Sci Hort 243:300–306

    Article  Google Scholar 

  • Patil VM, Dhande G, Thigale DM, Rajput J (2011) Micropropagation of pomegranate (Punica granatum L.)‘Bhagava’cultivar from nodal explant. Afr J Biotechnol 10:18130–18136

    CAS  Google Scholar 

  • Pérez-Alonso N, Martín R, Capote A, Pérez A, Hernández-Díaz EK, Rojas L, Jiménez E, Quiala E, Angenon G, Garcia-Gonzales R (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crop Prod 116:259–266

    Article  CAS  Google Scholar 

  • Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci U S A 106:3609–3614

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Cuppens ML, Voesenek LA, Visser EJ (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poudyal BK, Du GQ, Zhang YX, Liu J, Shi QC (2008) Studies on browning problem and phenols content on shoots of Yali, Aikansui and Abbe Fetel pears for in vitro culture. Front Agr China 2:321–330

    Article  Google Scholar 

  • Prasad R, Mali P (2000) Changes in physico-chemical characteristics of pomegranate squash during storage. Ind J Hort 57:18–20

    Google Scholar 

  • Raghava S, Himabindu K, Sita GL (1992) In vitro micropropagation of elite rosewood (Dalbergia latifolia Roxb.). Plant Cell Rep 11:126–131

    Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2009) Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. J Fruit Ornam Plant Res 17:29–38

    CAS  Google Scholar 

  • Raman Taramla, Gupta V S, Shukla S (2018) A robust micropropagation protocol for genetically true to type plants of Phule Arakta pomegranate. Indian J Hort 76: 23–31

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia jacks. Plant Cell Tissue Organ Cult 123:657–664

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol - Plant 36:319–330

    Article  CAS  Google Scholar 

  • Salgado JM, Ferreira TRB, de Oliveira BF, dos Santos Dias CT (2012) Increased antioxidant content in juice enriched with dried extract of pomegranate (Punica granatum) peel. Plant Food Hum Nutr 67:39–43

    Article  CAS  Google Scholar 

  • Satheesh M, Sridharan T (2014) Standardization of Punica granatum explant and callus induction through micropropagation-indirect organogenesis. Int J Renew Energy Technol 3:19–27

    Google Scholar 

  • Shao J, Chen C, Deng X (2003) In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tiss Org Cult 75:241–246

  • Sharma V, Thakur M, Kumar A (2017) An efficient method for in vitro propagation of Gisela 5 (Prunus cerasus X Prunus canescens)-clonal cherry rootstock. Int J Curr Microbiol App Sci 6:2617–2624

    Article  CAS  Google Scholar 

  • Sharon M, Sinha S (2000) Plant regeneration from cotyledonary node of Punica granatum L. Indian J Plant Physiol 5:344–348

    CAS  Google Scholar 

  • Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M (2016) A review study on Punica granatum L. J Evid Based Complementary Altern Med 21:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shi XX, Du GQ, Wang C, Ma BK, Ge YN (2007) Effects of subculture times on organogenesis characteristics of apple in vitro shoot explants. Acta Hortic 34:561–564

    CAS  Google Scholar 

  • Shirly R, Iyer R (2007) Micropropagation of cashew (Anacardium occidentale L.). in: Jain S M, Haggman H (eds) protocols for micropropagation of woody trees and fruits: springer Dordrecht, pp 313-322

  • Shrivastava V, Kant T (2010) Micropropagation of Pongamia pinnata (L.). Pierre-a native Indian biodiesel tree from cotyledonary node. Int J Biotechnol Biochem 6:555–560

    Google Scholar 

  • Singh P, Patel R, Kadam S (2013) In vitro mass multiplication of pomegranate from cotyledonary nodal explants cv. Ganesh. Afr J Biotechnol 12:2863–2868

    CAS  Google Scholar 

  • Singh S,Khawale R (2006) Plantlet regeneration fromthe nodal segments of pomegranate (Punica granatum L.) cv. Jyoti. In: Kumar A, Roy S (eds) Plant biotechnology and its applications in tissue culture, IK International Pvt Ltd, New Delhi, pp107–113"

  • Singh M, Rathore MS, Panwar D, Rathore JS, Dagla HR, Shekhawat NS (2009) Micropropagation of selected genotype of Aloe vera L.- an ancient plant for modern industry. J Sustain Forest 28:935–950

    Article  Google Scholar 

  • Skała E,Grąbkowska R, Sitarek P, KuźmaŁ,BłaużA, Wysokińska H (2015) Rhaponticum carthamoides regeneration through direct and indirect organogenesis, molecular profiles and secondary metabolite production. Plant Cell Tiss Org Cult 123:83–98

  • Soni M, Kanwar K (2016) Rejuvenation influences indirect organogenesis from leaf explants of pomegranate (Punica granatum L.)‘Kandhari Kabuli’. J Hort Sci Biotech 91:93–99

    Article  Google Scholar 

  • Su X (2000) Study on the differences of the seedling of different generations from successive tissue culture of Chinese fir clone. J Fujian College Forest 20:353–356

    Google Scholar 

  • Thakur M, Soni M, Sharma DP, Vivek M, Sharma V (2018) In vitro propagation of plum (Prunus salicina) cv.‘Santa Rosa’and assessment of genetic stability using RAPD markers. Indian J Plant Physiol 23:161–168

    Article  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  PubMed  Google Scholar 

  • Vazifeshenas MR, Tehranifar A, Davarnejad G, Nemati H (2015) Self and cross-pollination affect fruit quality of Iranian pomegranate ‘Malas-e-Yazdi’. Adv Environ Biol 9:1299–1301

    Google Scholar 

  • Vlachou G, Papafotiou M, Bertsouklis KF (2019) Studies on seed germination and micropropagation of Clinopodium nepeta: a medicinal and aromatic plant. Hort Sci 54:1558–1564

    CAS  Google Scholar 

  • Vujović T, Ružić D, Cerović R (2012) In vitro shoot multiplication as influenced by repeated subculturing of shoots of contemporary fruit rootstocks. Hort Sci 39:101–107

    Google Scholar 

  • Wang Y, Yao R (2019) Optimization of rhizogenesis for in vitro shoot culture of Pinus massoniana lamb. J For Res :1-7

  • Xiao Z, Fu R, Li J, Fan Z, Yin H (2016) Overexpression of the gibberellin 2-oxidase gene from Camellia lipoensis induces dwarfism and smaller flowers in Nicotiana tabacum. Plant Mol Biol Rep 34:182–191

    Article  CAS  Google Scholar 

  • Yuan Z, Fang Y, Zhang T, Fei Z, Han F, Liu C, Liu M, Xiao W, Zhang W, Wu S (2018) The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotech J 16:1363–1374

    Article  CAS  Google Scholar 

  • Yuan Z, Yin Y, Qu J, Zhu L, Li Y (2007) Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. J Genet Genomics 34:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Stoltz LP (1991) In vitro shoot formation and elongation of dwarf pomegranate. HortSci 26:1084–1084

    Article  Google Scholar 

  • Zhang C, Fu S, Tang G, Hu X, Guo J (2013) Factors influencing direct shoot regeneration from mature leaves of Jatropha curcas, an important biofuel plant. In Vitro Cell Dev Biol - Plant 49:529–540

    Article  CAS  Google Scholar 

  • Zhang Y, Wang B, Guo L, Xu W, Wang Z, Li B, Zhang J (2018) Factors influencing direct shoot regeneration from leaves, petioles, and plantlet roots of triploid hybrid Populus sect. Tacamahaca. J For Res 29:1533–1545

    Article  CAS  Google Scholar 

  • Zhu L, Chu X, Sun T, Ye J, Wu X (2019) Micropropagation of Pinus densiflora and the evaluation of nematode resistance of regenerated microshoots in vitro. J For Res 30:519–528

    Article  CAS  Google Scholar 

  • Zhu LH, Wu XQ, Qu HY, Ji J, Ye JR (2010) Zhu LH, Wu XQ, Qu HY, Ji J, Ye JR (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tiss Org Cult 102:121–128

Download references

Acknowledgements

The authors gratefully acknowledge ICAR, New Delhi, India, for funding the ad hoc project “In vitro mass propagation of wild and cultivated pomegranate (Punica granatum L.)” under Mini Mission-I, Phase-III. The author VV acknowledges the Department of Science and Technology (DST) Govt. of India, for financial support in the form of JRF under the INSPIRE Fellowship scheme for supporting the Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipasha Verma.

Additional information

Handling Editor: Bin Tian

Electronic supplementary material

ESM 1

(DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Zinta, G. & Kanwar, K. Optimization of efficient direct organogenesis protocol for Punica granatum L. cv. Kandhari Kabuli from mature leaf explants. In Vitro Cell.Dev.Biol.-Plant 57, 48–59 (2021). https://doi.org/10.1007/s11627-020-10111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10111-x

Keywords

Navigation