Skip to main content
Log in

Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINT™)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  • Abreu E, González G, Ortiz R et al (2007) Evaluación de vitroplantas de Henequén (Agave fourcroydes Lem) durante la fase de aclimatización. Cultiv Trop 28:5–11

    Google Scholar 

  • Aguilar Jiménez D, de la Rodríguez OJL (2018) Micropropagation and acclimatization of Maguey Pitzometl ( Agave marmorata Roezl ) in the poblana Mixteca. Rev Colomb Biotecnol XX:124–131. https://doi.org/10.15446/rev.colomb.biote.v20n2.77084

    Article  Google Scholar 

  • Ahmadian M, Babaei A, Shokri S, Hessami S (2017) Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. J Genet Eng Biotechnol 15:309–315. https://doi.org/10.1016/j.jgeb.2017.07.005

    Article  Google Scholar 

  • Andrade-Torres A (2011) Uso de diferentes estrategias para mejorar la micropropagación de cocotero a partir de explantes de plúmula y de inflorescencia inmadura. MÉXICO

  • Aragón C, Carvalho L, González J et al (2010) Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. Biol Plant 54:237–244. https://doi.org/10.1007/s10535-010-0042-y

    Article  CAS  Google Scholar 

  • Aragón CE, Sánchez C, Gonzalez-Olmedo J et al (2014) Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol Plant 58:29–38. https://doi.org/10.1007/s10535-013-0381-6

    Article  CAS  Google Scholar 

  • Arizaga S, Ezcurra E (1995) Insurance against reproductive failure in a semelparous plant: bulbil formation in Agave macroacantha flowering stalks. Oecologia 101:329–334. https://doi.org/10.1007/BF00328819

    Article  CAS  Google Scholar 

  • Ayenew B, Tadesse T, Gebremariam E et al (2013) Efficient use of temporary immersion bioreactor (TIB) on pineapple (Ananas comosus L.) multiplication and rooting ability. J Microbiol Biotechnol Food Sci 2:2456–2465

    CAS  Google Scholar 

  • Batková P, Pospísilová J, Synková H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Plant Cell 52:413–422. https://doi.org/10.1007/s10535-008-0085-5

    Article  Google Scholar 

  • Bello-Bello JJ, Canto-Flick A, Balam-uc E et al (2010) Improvement of in vitro proliferation and elongation of Habanero Pepper shoots ( Capsicum chinense Jacq .) by temporary immersion. HortScience 45:1093–1098

    Article  Google Scholar 

  • Bello-Bello JJ, Cruz-Cruz CA, Pérez-Guerra JC (2019) A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). Vitr Cell Dev Biol - Plant 55:313–320. https://doi.org/10.1007/s11627-019-09973-7

    Article  Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for liquid medium in mass propagation. Liq Cult Syst Vitr Plant Propag 165–185. doi: https://doi.org/10.1007/1-4020-3200-5_11

  • Carrillo-Bermejo EA, Herrera-Alamillo MA, González-Mendoza VM, Pereira-Santana A, Keb-Llanes MA, Castaño E, Robert ML, Rodríguez-Zapata LC (2019) Comparison of two different micropropagation systems of Saccharum officinarum L. and expression analysis of PIP2;1 and EIN3 genes as efficiency system indicators. Plant Cell Tissue Organ Cult 136:399–405. https://doi.org/10.1007/s11240-018-1508-4

    Article  CAS  Google Scholar 

  • Carvalho LC, Vilela BJ, Vidigal P, Mullineaux PM, Amâncio S (2006) Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. Int J Plant Sci 167:759–770. https://doi.org/10.1086/503919

    Article  CAS  Google Scholar 

  • Cavallaro V, Patanè C, Cosentino SL, di Silvestro I, Copani V (2014) Optimizing in vitro large scale production of giant reed (Arundo donax L.) by liquid medium culture. Biomass Bioenergy 69:21–27. https://doi.org/10.1016/j.biombioe.2014.07.004

    Article  CAS  Google Scholar 

  • CRT (2004) Avances de la investigación en el agave tequilero. Consejo Regulador del Tequila, México

    Google Scholar 

  • Dias MC, Pinto G, Santos C (2011) Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor mill. Photosynthetica 49:259–266. https://doi.org/10.1007/s11099-011-0028-9

    Article  Google Scholar 

  • Domínguez Rosales MS, Alpuche Solís ÁG, Vasco Méndez NL, Pérez Molphe Balch E (2008) Efecto de citocininas en la propagación in vitro de agaves Mexicanos. Rev Fitotec Mex 31:317–322

  • Faisal M, Anis M (2009) Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets. Plant Cell Tissue Organ Cult 99:125–132. https://doi.org/10.1007/s11240-009-9584-0

    Article  CAS  Google Scholar 

  • Gao M, Lin Z, Luo C et al (2016) High efficiency of propagation for Sagittaria sagittifolia using a temporary immersion bioreactor system. J Agric Sci Technol 6:161–170. https://doi.org/10.17265/2161-6256/2016.03.003

    Article  CAS  Google Scholar 

  • García-Ramírez Y, Gonzales Gonzáles M, Quiala Mendoza E et al (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad . Ex Wendl in Temporary Immersion. Am J Plant Sci 5:205–211

    Article  Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1023/A:1015668610465

    Article  CAS  Google Scholar 

  • Georgieva L, Tsvetkov I, Georgieva M, Kondakova V (2016) New protocol for in vitro propagation of berry plants by tis bioreactor. Bulg J Agric Sci 22:745–751

    Google Scholar 

  • Godoy-Hernández G, Vazquez-Flota F (2006) Growth measurements. In: Loyola-Vargas VM, Vázquez-Flota F (eds) Plant cell culture protocols, 2nd edn. Second Edi. Humana Press, Towota, pp 51–58

    Google Scholar 

  • Goncalves S, Martins N, Romano A (2017) Physiological traits and oxidative stress markers during acclimatization of micropropagated plants from two endangered Plantago species: P. algarbiensis Samp. and P. almogravensis Franco. Vitr Cell Dev Biol - Plant 53:259–255. https://doi.org/10.4236/oalib.1101787

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic (Amsterdam) 108:105–120. https://doi.org/10.1016/j.scienta.2006.01.038

    Article  CAS  Google Scholar 

  • Hazarika BN, Teixeira da Silva JA, Talukdar A (2006) Effective acclimatization of in vitro cultured plants: methods, physiology and genetics. Floric Ornam Plant Biotechnol II:427–438

    Google Scholar 

  • Ivanova M, van Staden J (2010) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul 60:143–150. https://doi.org/10.1007/s10725-009-9430-8

    Article  CAS  Google Scholar 

  • Jang HR, Lee HJ, Shohael AM, Park BJ, Paek KY, Park SY (2016) Production of biomass and bioactive compounds from shoot cultures of Rosa rugosa using a bioreactor culture system. Hortic Environ Biotechnol 57:79–87. https://doi.org/10.1007/s13580-016-0111-z

    Article  CAS  Google Scholar 

  • Majada JP, Tadeo F, Fal MA, Sánchez-Tamés R (2000) Impact of culture vessel ventilation on the anatomy and morphology of micropropagated carnation. Plant Cell Tissue Organ Cult 63:207–214. https://doi.org/10.1023/A:1010650131732

    Article  Google Scholar 

  • Malik M, Warchoł M, Kwaśniewska E, Pawłowska B (2017) Biochemical and morphometric analysis of Rosa tomentosa and Rosa rubiginosa during application of liquid culture systems for in vitro shoot production. J Hortic Sci Biotechnol 92:606–613. https://doi.org/10.1080/14620316.2017.1324744

    Article  CAS  Google Scholar 

  • Martínez-Estrada E, Islas-Luna B, Pérez-Sato JA, Bello-Bello JJ (2019) Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci Hortic (Amsterdam) 249:185–191. https://doi.org/10.1016/j.scienta.2019.01.053

    Article  Google Scholar 

  • Monja-Mio K, Herrera-Alamillo MA, Robert ML (2016) Somatic embryogenesis in temporary immersion bioreactors. In: Loyola-Vargas MV, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Cham, pp 435–454

    Chapter  Google Scholar 

  • Monja-Mio KM, Herrera-Alamillo MÁ, Sánchez-Teyer LF, Robert ML (2019) Breeding strategies to improve production of Agave (Agave spp.). In: Advances in Plant Breeding Strategies: Industrial and Food Crops. pp 319–362

  • Monja-Mio KM, Pool FB, Herrera GH, EsquedaValle M, Robert ML (2015) Development of the stomatal complex and leaf surface of Agave angustifolia Haw. “Bacanora” plantlets during the in vitro to ex vitro transition process. Sci Hortic (Amsterdam) 189:32–40. https://doi.org/10.1016/j.scienta.2015.03.032

    Article  CAS  Google Scholar 

  • Monja-Mio KM, Robert ML (2016) Somatic embryogenesis in Agave: an overview

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nasri A, Baklouti E, Ben Romdhane A, Maalej M, Schumacher HM, Drira N, Fki L (2019) Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci Hortic (Amsterdam) 245:144–153. https://doi.org/10.1016/j.scienta.2018.10.016

    Article  CAS  Google Scholar 

  • Osório ML, Osório J, Romano A (2010) Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. Biol Plant 54:415–422. https://doi.org/10.1007/s10535-010-0076-1

    Article  CAS  Google Scholar 

  • Peña-Ramírez YJ, Juárez-Gómez J, Gómez-López L, Jerónimo-Pérez JL, García-Sheseña I, González-Rodríguez JA, Robert ML (2010) Multiple adventitious shoot formation in Spanish red cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. Vitr Cell Dev Biol - Plant 46:149–160. https://doi.org/10.1007/s11627-010-9280-0

    Article  CAS  Google Scholar 

  • Pospíšilová J, Tichá I, KadleČek P et al (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia jacks. Vitr Cell Dev Biol - Plant 52:154–160. https://doi.org/10.1007/s11627-015-9735-4

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG, Ramírez-Madero G, Hernández-Rincón EU (2016) Micropropagation of Stevia rebaudiana Bert. Iin temporary immersion systems and evaluation of genetic fidelity. South African J Bot 106:238–243. https://doi.org/10.1016/j.sajb.2016.07.015

    Article  CAS  Google Scholar 

  • Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Vitr Cell Dev Biol - Plant 50:576–581. https://doi.org/10.1007/s11627-014-9602-8

    Article  CAS  Google Scholar 

  • Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Varas E, Sánchez C, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees - Struct Funct 32:61–71. https://doi.org/10.1007/s00468-017-1611-x

    Article  CAS  Google Scholar 

  • Rescalvo-Morales A, Monja-Mio K, Robert ML, Sánchez-Teyer LF (2019) Telomere length in Agave tequilana Weber plants during the in vitro to ex vitro transition. Plant Cell Tissue Organ Cult 136:133–140. https://doi.org/10.1007/s11240-018-1499-1

    Article  CAS  Google Scholar 

  • Robert M, Herrera-Herrera J, Herrera-Alamillo M et al (2004) Manual for the in vitro culture of Agaves. United Nations Industrial Development Organization, Vienna

    Google Scholar 

  • Robert ML, Herrera JL, Chan JL, Contreras F (1992) Micropropagation of Agave spp. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 19. Springer- Verlag, Berlin, pp 306–329

  • Robert ML, Herrera-Herrera JL, Castillo E et al (2006a) An efficient method for the micropropagation of Agave species. Methods Mol Biol 318:165–178. https://doi.org/10.1385/1-59259-959-1:165

    Article  Google Scholar 

  • Robert ML, Herrera-Herrera JL, Herrera-Herrera G et al (2006b) A new temporary immersion bioreactor system for micropropagation. Methods Mol Biol 318:121–129. https://doi.org/10.1385/1-59259-959-1:121

    Article  Google Scholar 

  • Thi LT, Park YG, Jeong BR (2019) Growth and development of carnation ‘ Dreambyul ’ plantlets in a temporary immersion system and comparisons with conventional solid culture methods. Vitr Cell Dev Biol - Plant 55:539–548. https://doi.org/10.1007/s11627-019-10012-8

    Article  Google Scholar 

  • Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tissue Organ Cult 103:131–135

    Article  Google Scholar 

  • Yan H, Yang L, Li Y (2011) Improved growth and quality of Dioscorea fordii Prain et Burk and Dioscorea alata plantlets using a temporary immersion system. Afr J Biotechnol 10:19444–19448. https://doi.org/10.5897/AJB11.2684

    Article  CAS  Google Scholar 

  • Yescas Arreola E, Campos Ángeles GV, Enríquez del Valle JR et al (2016) Acclimation of Agave americana var . Oaxacensis obtained in vitro. Rev Mex Ciencias Agrícolas 7:911–922

    Article  Google Scholar 

  • Ziv M (1991) Quality of micropropagated plants: vitrification. Vitr Cell Dev Biol - Plant 27:64–69

  • Ziv M (1995) In vitro acclimatization. In: Aitken-Christie J, Kozai T, Smith MA (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, New Zealand, pp 493–516

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelly M. Monja-Mio or Manuel L. Robert.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monja-Mio, K.M., Olvera-Casanova, D., Herrera-Herrera, G. et al. Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINT™). In Vitro Cell.Dev.Biol.-Plant 56, 662–669 (2020). https://doi.org/10.1007/s11627-020-10109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10109-5

Navigation