Skip to main content
Log in

Loss of developmental pluripotency occurs in two stages during leaf aging in Arabidopsis thaliana

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Aging in plants and animals can result in the loss of cellular pluripotency and the inability to regenerate multiple organs from differentiated, somatic tissues. Detached cotyledons from Arabidopsis thaliana (L.) Heynh. seedlings can proliferate to form callus as well as root and shoot organs in the presence of the phytohormones auxin and cytokinin or their synthetic analogs. In this study, detached cotyledons from the ecotype Landsberg erecta (Ler-0) demonstrated two separate developmental intervals of pluripotency loss. During a 48- to 60-h interval, occurring approximately 4 to 6 d after germination (DAG), detached cotyledons from Ler-0 could proliferate new cells (callus) but lost shoot regeneration competency, which the ecotype Nossen-0 (No-0) retained. In older cotyledons, the pluripotency loss was more severe, as detached cotyledons failed to proliferate callus. In the first interval, Ler-0 cotyledons lost the ability to respond to treatment with a high concentration of synthetic auxin, a level previously hypothesized to promote dedifferentiation. However, both young and old Ler-0 cotyledons were found to induce WUSCHEL::NLS-GUS, a marker for undifferentiated shoot apical meristem cells. The late-stage interval positively correlated to the timing of slowed growth in cotyledons still attached to intact seedlings. Also, cytokinin overexpression could rescue (or delay) this late-stage callus proliferation failure, but not the early-stage decline in shoot regeneration ability. Combined, the results demonstrate that loss of pluripotency in vitro occurs in distinct temporal stages and involves auxin and/or cytokinin signaling. Furthermore, there is genetic variation for this loss of pluripotency within Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233

    Article  CAS  Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration of transgenic Arabidopsis. Plant Cell Tissue Organ Cult 116:67–79

    Article  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  CAS  PubMed  Google Scholar 

  • Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P, Rozier F, Mirabet V, Legrand J, Laine S, Thevenon E, Farcot E, Cellier C, Das P, Bishopp A, Dumas R, Parcy F, Helariutta Y, Boudaoud A, Godin C, Traas J, Guedon Y, Vernoux T (2014) Cytokinin signaling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–424

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol5:939–943

  • Bino RJ, Devries JN, Kraak HL, Vanpijlen JG (1992) Flow cytometric determination of nuclear replication stages in tomato seeds during priming and germination. Ann Bot 69:231–236

    Article  Google Scholar 

  • Boyer LA, Mathur D, Jaenisch R (2006) Molecular control of pluripotency. Curr Opin Genet Dev 16:455–462

    Article  CAS  PubMed  Google Scholar 

  • Caro E, Desvoyes B, Gutierrez C (2012) GTL1 keeps cell growth and nuclear ploidy under control. EMBO J 31:4483–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandlee JM (2001) Current molecular understanding of the genetically programmed process of leaf senescence. Physiol Plant 113:1–8

    Article  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Qu Y, Sheng L, Liu J, Huang H, Xu L (2014) A simple method suitable to study de novo root organogenesis. Front Plant Sci 5:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng ZJ, Zhu SS, Gao XQ, Zhang XS (2010) Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep 29:927–933

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenisis. Dev Biol 95:288–293

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1984) Phenocritical times in the process of in vitro shoot organogenesis. Dev Biol 101:382–390

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML, Warnick DA (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112:494–497

    Article  CAS  Google Scholar 

  • Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration—lessons from muscle. Cell Cycle 4:407–410

    Article  CAS  PubMed  Google Scholar 

  • DeCook R, Lall S, Nettleton D, Howell SH (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172:1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher LC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependant auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan SS, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurtner GC, Callaghan MJ, Longaker MT (2007) Progress and potential for regenerative medicine. Annu Rev Med 58:299–312

    Article  CAS  PubMed  Google Scholar 

  • Hicks GS (1994) Shoot induction and organogenesis in vitro—a developmental perspective. In Vitro Cell Dev Biol - Plant 30P:10–15

    Article  Google Scholar 

  • Horstman A, Fukuoka H, Muino JM, Nitsch L, Guo C, Passarinho P, Sanchez-Perez G, Immink R, Angenent G, Boutilier K (2015) AIL and HDG proteins act antagonistically to control cell proliferation. Development 142:454–464

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenik PD, Barton MK (2005) Surge and destroy: the role of auxin in plant embryogenesis. Development 132:3577–3585

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi M, Sugiyama M (2006) A novel plant-specific family gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation. Plant Physiol 140:591–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara MEB, Garcia MCG, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  Google Scholar 

  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K et al (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. PNAS 97:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Sugiyama M (2005) Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant J 43:479–490

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Chen J, Yang Z (2015) Auxin regulation of cell polarity in plants. Curr Opin Plant Biol 28:144–153

    Article  CAS  PubMed  Google Scholar 

  • Preece JE (2003) A century of progress with vegetative plant propagation. Hortscience 38:1015–1025

    Google Scholar 

  • Pulianmackal AJ, Kareem AVK, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Quach Mason M, Goron TL, Arnold ED, Dickinson P, Kajenthira A, Dinka SJ, Oro R, Raizada MN (2017) Pyramid screening: combining three genetic screens into one efficient screen for shoot regeneration mutants in Arabidopsis thaliana. J Plant Growth Regul. doi:10.1007/s00344-016-9651-9

    Google Scholar 

  • Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D (2015) Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot 66:1437–1452

    Article  CAS  PubMed  Google Scholar 

  • Ribnicky DM, Cohen JD, Hu WS, Cooke TJ (2002) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214:505–509

    Article  CAS  PubMed  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Rubin H (2002) The disparity between human cell senescence in vitro and lifelong replication in vivo. Nature Biotechnol 20:675–681

    Article  CAS  Google Scholar 

  • Rupp HM, Frank M, Werner T, Strnad M, Schmulling T (1999) Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J 18:557–563

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15

    Article  CAS  PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  CAS  PubMed  Google Scholar 

  • Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  CAS  PubMed  Google Scholar 

  • Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128:747–762

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Science 311:385–388

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D (2016) AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiol 170:283–293

    Article  CAS  PubMed  Google Scholar 

  • Zhang TQ, Lian H, Tang H, Dolezal K, Zhou CM, Yu S, Chen JH, Chen Q, Liu H, Ljung K, Wang JW (2015) An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. Plant Cell 27:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao QH, Fisher R, Auer C (2002) Developmental phases and STM expression during Arabidopsis shoot organogenesis. Plant Growth Regul 37:223–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Steven Chatfield for the assistance in selecting mutant and reporter lines and for propagating seed. Thomas Laux graciously provided the WUS::NLS-GUS seed. We thank Rosalinda Oro for significant greenhouse assistance. AK and MP were recipients of an NSERC Undergraduate Research Scholarship (USRA). This research was supported by an Ontario Premier’s Research Excellence Award, a grant from the Ontario Ministry of Agriculture and Food (OMAF), and a Discovery Grant from NSERC Canada to MNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish N. Raizada.

Additional information

Editor: Jeffery Adelberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raizada, M.N., Goron, T.L., Bannerjee, O. et al. Loss of developmental pluripotency occurs in two stages during leaf aging in Arabidopsis thaliana . In Vitro Cell.Dev.Biol.-Plant 53, 178–187 (2017). https://doi.org/10.1007/s11627-017-9813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9813-x

Keywords

Navigation