NMR-based metabolomics profile comparisons to distinguish between embryogenic and non-embryogenic callus tissue of sugarcane at the biochemical level

Abstract

Nuclear magnetic resonance (NMR)-based metabolomics profile comparisons of embryogenic and non-embryogenic calli of sugarcane were performed using principal component analysis (PCA) to determine a possible relationship between certain metabolites and somatic embryogenesis. Mahalanobis distance (DM) analysis showed significant metabolic profile differences between the embryogenic and non-embryogenic callus groups. Significantly different spectral buckets and their corresponding metabolites have been identified using volcano- and loading-plot analyses, where glucose, fructose, sucrose, and alanine were observed at higher concentrations and asparagine, glutamine, lysine, 2-hydroxyisobutyrate, and choline were observed at lower concentrations in embryogenic calli than in non-embryogenic calli. The results of this research indicate possible roles of different sugars, amino acids, and aliphatic compounds during sugarcane somatic embryogenesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arencibia A (1999) Gene transfer in sugarcane. In: Hohn T, Leisinger KM (eds) Biotechnology of food crops in developing countries. Plant Gene Research, pp 79–104

  2. Arencibia AD, Carmona E, Cornide MT, Menendez E, Molina P (2000) Transgenic sugarcane (Saccharum species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 46. Transgenic crops I. Springer, Heidelberg, pp 188–206

    Google Scholar 

  3. Blanc G, Lardet L, Martin A, Jacob JL, Carron MP (2002) Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). J Exp Bot 53:1453–1462

    CAS  PubMed  Article  Google Scholar 

  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Article  Google Scholar 

  5. Chanprame S, Kuo TM, Widholm JM (1998) Soluble carbohydrate of soybean [Glycine max (L.) Merr.] somatic and zygotic embryos during development. In Vitro Cell Dev Biol Plant 34:64–68

    CAS  Article  Google Scholar 

  6. Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JTJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Claparols I, Santos MA, Torne JM (1993) Influence of some exogenous amino acids on the production of maize embryogenic callus and on endogenous amino acid content. Plant Cell Tissue Organ Cult 34:1–11

    CAS  Article  Google Scholar 

  8. Dave A, Batra A (1995) Role of protein metabolism constituents in somatic embryo formation in cumin. Indian J Plant Physiol 38:25–27

    CAS  Google Scholar 

  9. Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    CAS  Article  Google Scholar 

  10. Goodpaster AM, Kennedy MA (2011) Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemometr Intell Lab Syst 109:162–170

    CAS  Article  Google Scholar 

  11. Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  12. Jeyaseelan M, Rao MV (2005) Biochemical studies of embryogenic and non-embryogenic callus of Cardiospermum halicacabum L. Indian J Exp Biol 43:555–560

    CAS  PubMed  Google Scholar 

  13. Karp A (1991) On the current understanding of somaclonal variation. In: Miflin HF (ed) Oxford surveys of plant molecular and cell biology. Oxford University Press, New York, pp 1–58

    Google Scholar 

  14. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. doi:10.1038/nprot.2009.237

    CAS  PubMed  Article  Google Scholar 

  15. Kim SW, Ban SH, Jeong SC (2007) Genetic discrimination between Catharanthus roseus cultivars by metabolic fingerprinting using 1 h NMR spectra of aromatic compounds. Biotechnol Bioprocess Eng 12:646–652

    CAS  Article  Google Scholar 

  16. Lima MRM, Felgueiras ML, Gracxa G (2010) NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. J Exp Bot 61:4033–4042

    CAS  PubMed  Article  Google Scholar 

  17. Loiseau J, Marche C, Deunff YL (1995) Effects of auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tissue Organ Cult 41:267–275

    CAS  Article  Google Scholar 

  18. Lu C, Vasil IK, Ozias-Akins P (1982) Somatic embryogenesis in Zea mays L. Theor Appl Genet 62:109–112

    CAS  PubMed  Article  Google Scholar 

  19. Malabadi RB, Staden JV (2011) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol Plant 41:181–186

    Article  Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  21. Nieves N, Segura-Nieto M, Blanco MA, Sánchez M, González A, González JL, Castillo R (2003) Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cell Dev Biol Plant 39:343–345

    CAS  Article  Google Scholar 

  22. Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Goviden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    PubMed Central  PubMed  Article  Google Scholar 

  23. Pareek LK (2005) Trends in plant tissue culture and biotechnology. Published by Agrobios, Jodhpur. ISBN 10: 8177540890 / ISBN 13: 9788177540895

  24. Parella T (2004) Pulse Program Catalogue. In: NMRGuide4.0. Bruker BioSpin GmbH

  25. Patel S, Jasrai YT, Adiyecha R (2011) Induction of somatic embryogenesis and genetic fidelity of endangered medicinal herb Curculigo orchioides Gaertn. Res Plant Biol 1:48–52

    Google Scholar 

  26. Philips GC, Gamborg OL (2005) Plant cell, tissue and organ culture. Narosa, New Delhi, pp 91–93

    Google Scholar 

  27. Quiroz FFR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  28. Samantaray S, Rout GR, Das P (1997) Regeneration of plants via somatic embryogenesis from leafbase and leaf tip segments of Echinochloa colona. Plant Cell Tissue Organ Cult 47:119–125

    Article  Google Scholar 

  29. Steward F, Mapes M, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  30. Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120

    CAS  PubMed  Article  Google Scholar 

  31. Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereals and grass crops. J Plant Physiol 128:192–218

    Article  Google Scholar 

  32. Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  33. Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212. doi:10.1016/j.ab.2007.10.002

    CAS  PubMed  Article  Google Scholar 

  34. Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614:127–133

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) Metaboanalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi:10.1093/nar/gks374

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Yang SO, Kim SH, Kim Y, Kim HS, Chun YJ, Choi HK (2009) Metabolic discrimination of Catharanthus roseus calli according to their relative locations using (1)H-NMR and principal component analysis. Biosci Biotechnol Biochem 73:2032–2036

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jack C. Comstock of USDA-ARS Sugarcane Field Station Canal Point, Florida for supplying the sugarcane materials used for initiating callus cultures that were used in this investigation as plant tissue materials for comparison. AB is supported by SC-INBRE (2 P20 GM103499), BS was supported by BlueCross BlueShield of South Carolina, and IM was supported by Biotechnology graduate program of Claflin University, South Carolina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamal Chowdhury.

Additional information

Editor: David Duncan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmud, I., Shrestha, B., Boroujerdi, A. et al. NMR-based metabolomics profile comparisons to distinguish between embryogenic and non-embryogenic callus tissue of sugarcane at the biochemical level. In Vitro Cell.Dev.Biol.-Plant 51, 340–349 (2015). https://doi.org/10.1007/s11627-015-9687-8

Download citation

Keywords

  • Sugarcane
  • Embryogenic callus
  • Non-embryogenic callus
  • NMR-based metabolomics
  • Pathway analysis