In Vitro Cellular & Developmental Biology - Plant

, Volume 50, Issue 6, pp 746–751 | Cite as

In vitro propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by carbon sources

  • Jaqueline Martins Vasconcelos
  • Cleber Witt Saldanha
  • Leonardo Lucas Carnevalli Dias
  • Joseila Maldaner
  • Mailson Monteiro Rêgo
  • Luzimar Campos Silva
  • Wagner Campos Otoni


This study aimed to establish a protocol for in vitro propagation of two accessions (Ac) of Pfaffia glomerata (Ac 4 and Ac 13) and to evaluate the effect of different carbon sources on the production of 20-hydroxyecdysone (20E) in leaves and roots. For the assessment of axillary shoot proliferation in vitro, nodal segments were inoculated onto Murashige and Skoog (MS) medium supplemented with 2.22 μM 6-benzyladenine and 2.68 μM α-naphthaleneacetic acid and carbon sources (glucose or sucrose) at varying concentrations (0.1, 0.2, or 0.3 M). To assess the in vitro production of 20E, nodal segments were inoculated into Magenta® containers containing MS medium with different carbon sources (glucose, sucrose, or glucose + sucrose at 0.1 or 0.2 M) and placed in plastic bags with bacterial filters. Both experiments were composed of five repetitions for each treatment and analyzed after 30 d of culture. Multiple shoot formations were genotype-dependent when segments were cultivated on a medium supplemented with glucose or sucrose at 0.1 M, yielding 35 and 43 shoots per explant for Ac 4 and 4.4 and 2.8 shoots per explant for Ac 13, respectively. For the 20E content, significant effects were also observed among accessions and carbon sources. Ac 13 had the highest average 20E levels for both roots and leaves. Under the experimental conditions, Ac 4 had more favorable characteristics for large-scale multiplication than Ac 13, and glucose at 0.2 M was the best carbon source for the cultivation of Pfaffia, both for producing multiple shoots and for in vitro 20E production. This is the first report using a combination of auxin and cytokinin to enable effective Pfaffia in vitro axillary shoot proliferation from nodal explants.


Axillary proliferation Carbon source Genotype Micropropagation Phytoecdysteroid Organogenesis 



This work was supported by the National Council for Scientific and Technological Development (CNPq) [MCT/CNPq 480675/2009-0; PQ 303201/2010-10 to WCO] and a grant from the Minas Gerais State Research Foundation (FAPEMIG) [CAG-APQ-01036-09]. We thank Dr. Roberto Fontes Vieira (National Center for Genetic Resources and Biotechnology–Embrapa/Cenargen, Brasília, DF, Brazil) for providing the Pfaffia glomerata accessions.


  1. Alves RBN, Bertoni BW, Vieira RF, França SC, Ming LC, Pereira AS (2010) Influência de diferentes meios de cultura sobre o crescimento de Pfaffia glomerata (Spreng.) Pedersen (Amaranthaceae) para conservação in vitro. Rev Bras Plantas Med 12:510–515. doi: 10.1590/S1516-05722010000400016 CrossRefGoogle Scholar
  2. Arora R, Mathur A, Mathur AK (2010) Emerging trends in medicinal plant biotechnology. In: Arora R (ed) Medicinal plant biotechnology. CABI International, London, pp 1–12CrossRefGoogle Scholar
  3. Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339. doi: 10.1016/S0031-9422(01)00078-4 PubMedCrossRefGoogle Scholar
  4. Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart JJ, Otoni WC (2008a) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone—a review. Botany 86:978–987. doi: 10.1139/B08-049 CrossRefGoogle Scholar
  5. Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart JJ, Vieira RF, Otoni WC (2008b) Level and distribution of 20-hydroxyecdysone during Pfaffia glomerata development. Braz J Plant Physiol 20:305–311CrossRefGoogle Scholar
  6. Figueiredo LS, Teixeira SL, Freitas SP, Vieira IJC, Martins ER (2004) Comportamento de acessos de Pfaffia glomerata (Spreng.) Pedersen (Amaranthaceae) nas condições de Campos dos Goytacazes - RJ. Rev Bras Plantas Med 7:67–72Google Scholar
  7. Flores R, Nicoloso FT, Maldaner J, Garlet TMB (2009) Benzilaminopurina (BA) e thidiazuron (TDZ) na propagação in vitro de Pfaffia glomerata (Spreng.) Pedersen. Rev Bras Plant Med 11:292–299. doi: 10.1590/S0103-84782006000300018 Google Scholar
  8. Flores R, Brondani D Jr, Cezarotto V Jr, Giacomelli SR, Nicoloso FT (2010) Micropropagation and β-ecdysone content of the Brazilian ginsengs Pfaffia glomerata and Pfaffia tuberosa. In Vitro Cell Dev Biol Plant 46:210–217CrossRefGoogle Scholar
  9. Gobbo Neto L, Lopes NP (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quim Nova 30:374–381. doi: 10.1590/S0100-40422007000200026 CrossRefGoogle Scholar
  10. Gomes SSL, Saldanha CW, Neves CS, Trevizani M, Raposo NRB, Notini MM, Santos MO, Campos JMS, Otoni WC, Viccini LF (2014) Karyotype, genome size, and in vitro chromosome doubling of Pfaffia glomerata (Spreng.) Pedersen. Plant Cell, Tissue Organ Cult 118:45–56. doi: 10.1007/s11240-014-0460-1 Google Scholar
  11. Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue Organ Cult 110:227–238CrossRefGoogle Scholar
  12. Kamada T, Picoli EAT, Vieira RF, Barbosa LCA, Cruz CD, Otoni WC (2009) Variação de caracteres morfológicos e fisiológicos de populações naturais de Pfaffia glomerata (Spreng.) Pedersen e correlação com a produção de β-ecdisona. Rev Bras Plantas Med 11:247–256CrossRefGoogle Scholar
  13. Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:1–30CrossRefGoogle Scholar
  14. Maldaner J, Nicoloso FT, Santos ES, Fagundes CK, Flores R, Jucoski GO, Skrebsky EC (2006) Sacarose e nitrogênio na multiplicação in vitro de Pfaffia glomerata (Spreng.) Pedersen. Cienc Rural 36:1201–1206. doi: 10.1590/S0103-84782006000400024 CrossRefGoogle Scholar
  15. Martins CF, Nicoloso FT (2004) Micropropagação de Pfaffia tuberosa (Spreng.) Hicken. Rev Bras Plantas Med 6:53–61Google Scholar
  16. Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560. doi: 10.1016/j.biotechadv.2008.07.001 PubMedCrossRefGoogle Scholar
  17. Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Hortic 123:295–300. doi: 10.1016/j.scienta.2009.09.014 CrossRefGoogle Scholar
  18. Murashige T, Skoog F (1962) A revised medium for growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  19. Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. Meth Mol Biol 643:1–13CrossRefGoogle Scholar
  20. Nascimento EX, Mota JH, Vieira MC, Zárate NAH (2007) Produção de biomassa de Pfaffia glomerata (Spreng.) Pedersen e Plantago major L. em cultivo solteiro e consorciado. Ciênc Agrotec 31:724–730. doi: 10.1590/S1413-70542007000300019 CrossRefGoogle Scholar
  21. Nguyen KT, Arsenault PR, Weathers PJ (2011) Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. In Vitro Cell Dev Biol Plant 47:329–338. doi: 10.1007/s11627-011-9343-x PubMedCentralPubMedCrossRefGoogle Scholar
  22. Nicoloso FT, Erig AC, Martins CF, Russowisk D (2001) Micropropagação do ginseng brasileiro [Pfaffia glomerata (Spreng.) Pedersen]. Rev Bras Plantas Med 3:11–18Google Scholar
  23. Nicoloso FT, Erig AC, Russowisk D, Martins CF (2003) Efeito de doses e fontes de carboidratos no crescimento de plantas de ginseng brasileiro [Pfaffia glomerata (Spreng.) Pedersen] cultivadas in vitro. Ciênc Agrotec 27:84–90. doi: 10.1590/S1413-70542003000100010 CrossRefGoogle Scholar
  24. Oliveira F (1986) Pfaffia paniculata (Martius) Kuntze—O ginseng brasileiro. Rev Bras Farmacogn 1:86–92. doi: 10.1590/S0102-695X1986000100010 CrossRefGoogle Scholar
  25. Paiva Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97:193–202. doi: 10.1016/S0304-4238(02)00231-5 CrossRefGoogle Scholar
  26. Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS (2006) In vitro propagation of rose: a review. Biotechnol Adv 24:94–114. doi: 10.1016/j.biotechadv.2005.07.001 PubMedCrossRefGoogle Scholar
  27. Price J, Laxmi A, Martin SKS, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150. doi: 10.1105/tpc.104.022616 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants: conserved and novel mechanisms. Plant Cell 14:185–205. doi: 10.1146/annurev.arplant.57.032905.105441 Google Scholar
  29. Romano A, Noronha C, Martins-Loução MA (1995) Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tissue Organ Cult 40:159–167. doi: 10.1007/BF00037670 CrossRefGoogle Scholar
  30. Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors. Landes Bioscience and Springer Science + Business Media, pp 203–221Google Scholar
  31. Russowski D, Nicoloso FT (2003) Nitrogênio e fósforo no crescimento de plantas de ginseng brasileiro [Pfaffia glomerata (Spreng.) Pedersen] cultivadas in vitro. Cienc Rural 33:57–63. doi: 10.1590/S0103-84782003000100009 CrossRefGoogle Scholar
  32. Saldanha CW, Otoni CG, Azevedo JLF, Dias LLC, Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue Organ Cult 110:413–422CrossRefGoogle Scholar
  33. Saldanha CW, Otoni CG, Notini MM, Kuki KN, Cruz ACF, Rubio Neto A, Dias LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell Dev Biol Plant 49:433–444. doi: 10.1007/s11627-013-9529-5 CrossRefGoogle Scholar
  34. Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell, Tissue Organ Cult 118:87–99. doi: 10.1007/s11240-014-0464-x CrossRefGoogle Scholar
  35. Santana JRF, Paiva R, Souza AV, Oliveira LM (2011) Effect of different carbon sources on the in vitro multiplication of Annona sp. Ciênc Agrotec 35:487–493. doi: 10.1590/S1413-70542011005000002 CrossRefGoogle Scholar
  36. Sarasan V, Kite GC, Sileshi GW, Stevenson PC (2011) Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generation income for the rural poor. Plant Cell Rep 30:1163–1172. doi: 10.1007/s00299-011-1047-5 PubMedCrossRefGoogle Scholar
  37. Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue Organ Cult 108:465–472. doi: 10.1007/s11240-011-0058-9 CrossRefGoogle Scholar
  38. Singh J, Tiwari KN (2012) In vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L.—an important medicinal plant. Ind Crop Prod 35:224–229. doi: 10.1016/j.indcrop.2011.07.008 CrossRefGoogle Scholar
  39. Skrebsky EC, Nicoloso FT, Ferrão GE (2004) Sacarose e período de cultivo in vitro na aclimatização ex vitro de ginseng brasileiro (Pfaffia glomerata Spreng. Pedersen). Ciênc Rural 34:1471–1477. doi: 10.1590/S0103-84782004000500022 CrossRefGoogle Scholar
  40. Souza VC, Lorenzi H (2005) Botânica Sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira, baseado em APG II. Instituto Plantarum, Nova Odessa, pp 220–223Google Scholar
  41. Vigo CLS, Narita E, Milaneze-Gutierre MA, Marques LC (2004) Caracterização farmacognóstica comparativa de Pfaffia glomerata (Spreng.) Pedersen Hebanthe paniculata Martius—Amaranthaceae. Rev Bras Plantas Med 6:7–19Google Scholar
  42. Wawrosch C (2010) In vitro propagation of medicinal plants for conservation and quality assurance. In: Arora R (ed) Medicinal plant biotechnology. CABI International, London, pp 93–97CrossRefGoogle Scholar
  43. Weathers PJ, Towler MJ, Jianfeng X (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. doi: 10.1007/s00253-009-2354-4 PubMedCrossRefGoogle Scholar
  44. Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849. doi: 10.1007/s11033-012-2299-z PubMedCrossRefGoogle Scholar
  45. Yunus MF, Aziz MA, Kadir MA, Rashid AA (2012) In vitro propagation of Etlingera elatior (Jack) (torch ginger). Sci Hortic 135:145–150. doi: 10.1016/j.scienta.2011.12.016 CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2014

Authors and Affiliations

  • Jaqueline Martins Vasconcelos
    • 1
  • Cleber Witt Saldanha
    • 2
  • Leonardo Lucas Carnevalli Dias
    • 3
  • Joseila Maldaner
    • 4
  • Mailson Monteiro Rêgo
    • 5
  • Luzimar Campos Silva
    • 1
  • Wagner Campos Otoni
    • 1
    • 6
  1. 1.Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Centro de Pesquisa em FlorestasFEPAGROSanta MariaBrazil
  3. 3.Universidade Federal de São João Del ReiSete LagoasBrazil
  4. 4.FEPAGROHulha NegraBrazil
  5. 5.Centro de Ciências AgráriasUniversidade Federal da ParaíbaAreiaBrazil
  6. 6.Plant Biology Department, Plant Tissue Culture Laboratory/BIOAGROUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations