Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing

  • Konstantin V. KrutovskyEmail author
  • Iraida N. Tretyakova
  • Nataliay V. Oreshkova
  • Maria E. Pak
  • Olga V. Kvitko
  • Eugene A. Vaganov
Somaclonal Variation


The objective of this study was to obtain a genetically stable haploid in vitro-derived line from Siberian larch (Larix sibirica Ledeb.) using megagametophyte explants, which then could be used for different molecular genetic studies, including whole genome de novo sequencing. However, cytogenetic analysis and genotyping of 11 microsatellite loci showed high levels of genomic instability and a high frequency of mutation in the obtained megagametophyte-derived callus cultures. All cultures contained new mutations in one or more microsatellite loci.


Cytogenetics Genomic instability Haploid tissue culture Megagametophyte Microsatellite loci Siberian larch Larix sibirica Ledeb Somaclonal variation 



This study was supported by Research Grant No. 14.Y26.31.0004 from the Government of the Russian Federation.


  1. Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  2. Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol 11A:113–144Google Scholar
  3. Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817CrossRefGoogle Scholar
  4. Bhojwani SS, Dantu PK (2013a) Cellular totipotency. Plant tissue culture: an introductory text. Springer, New Delhi, pp 63–74Google Scholar
  5. Bhojwani SS, Dantu PK (2013b) Somatic embryogenesis. Plant tissue culture: an introductory text. Springer, New Delhi, pp 75–92Google Scholar
  6. Bhojwani SS, Dantu PK (2013c) Somaclonal variation. Plant tissue culture: an introductory text. Springer, New Delhi, pp 141–154Google Scholar
  7. Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698PubMedCrossRefGoogle Scholar
  8. Chen C, Liewlaksaneeyanawin C, Funda T, Kenawy A, Newton CH, El-Kassaby YA (2009) Development and characterization of microsatellite loci in western larch (Larix occidentalis Nutt). Mol Ecol Resour 9:843–845PubMedCrossRefGoogle Scholar
  9. De Klerk GJ (1990) How to measure somaclonal variation. Acta Bot Neerlandica 39:129–144Google Scholar
  10. Devey ME, Bell JC, Smith DN, Neale DB, Moran GF (1996) A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92:673–679PubMedCrossRefGoogle Scholar
  11. Eastman P, Webster FB, Pitel JA, Roberts DR (1991) Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis. Plant Cell Rep 10:425–430PubMedCrossRefGoogle Scholar
  12. Elmabrouk K, Elmeer S (2013) Factors regulating somatic embryogenesis in plants. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 56–81Google Scholar
  13. Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345CrossRefGoogle Scholar
  14. Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23:419–426PubMedCrossRefGoogle Scholar
  15. Fourre JL, Berger P, Niquet L, André P (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169CrossRefGoogle Scholar
  16. Gallego FJ, Martinez I, Celestino C, Toribio M (1997) Testing somaclonal variation using RAPDs in Quercus suber L. somatic embryos. Int J Plant Sci 158:563–567CrossRefGoogle Scholar
  17. Gao DY, Vallejo VA, He B, Gai YC, Sun LH (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tissue Organ Cult 98:187–196CrossRefGoogle Scholar
  18. Harvengt L, Trontin JF, Reymond I, Canlet F, Paques M (2001) Molecular evidence of true-to-type propagation of a 3-year old Norway spruce through somatic embryogenesis. Planta 213:828–832PubMedCrossRefGoogle Scholar
  19. Heinze B, Schmidt J (1995) Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85:341–345CrossRefGoogle Scholar
  20. Helmersson A, Jansson G, Bozhkov PV, von Arnold S (2008) Genetic variation in microsatellite stability of somatic embryo plants of Picea abies: a case study using six unrelated full-sib families. Scand J For Res 23:2–11Google Scholar
  21. Helmersson A, von Arnold S, Burg K, Bozhkov PV (2004) High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce. Tree Physiol 24:1181–1186PubMedCrossRefGoogle Scholar
  22. Hornero J, Martinez I, Celestino C, Gallego FJ, Torres V, Toribio M (2001) Early checking of genetic stability of cork oak somatic embryos by AFLP analysis. Int J Plant Sci 162:827–833CrossRefGoogle Scholar
  23. Isolda K, Watanabe A (2006) Isolation and characterization of microsatellite loci from Larix kaempferi. Mol Ecol 6:664–666CrossRefGoogle Scholar
  24. Ivanova AN, Tret’yakova IN, Vyazovetskova AS (2006) Induction of androgenic cultures in Siberian larch. Russ J Dev Biol 37:27–36CrossRefGoogle Scholar
  25. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188PubMedCrossRefGoogle Scholar
  26. Khasa DP, Jaramillo-Correa JP, Jaquish B, Bousquet J (2006) Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Mol Ecol 15:3907–3918Google Scholar
  27. Khasa DP, Newton CH, Rahman MH, Jaquish B, Dancik BP (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43:439–448PubMedCrossRefGoogle Scholar
  28. Kiselev KV, Dubrovina AS, Shumakova OA (2013) DNA mutagenesis in 2- and 20-yr-old Panax ginseng cell cultures. In Vitro Cell Dev Biol Plant 49:175–182CrossRefGoogle Scholar
  29. Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter MA (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait). In Vitro Cell Dev Biol Plant 45:20–33CrossRefGoogle Scholar
  30. Krutovsky KV, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV, Vaganov EA (2012a) The Siberian larch complete de novo genome sequencing project at the Siberian Federal University Genome Research Center. In: Proceedings of the 2nd International Conference “Plant Genetics, Genomics, and Biotechnology”. July 30–August 3, Irkutsk, Russia, p 41. http://confnscru/files/conferences/plantgen2012/136010/eAbstractBook%20PlantGen2012pdf. Cited 12 Dec 2013
  31. Krutovsky KV, Tretyakova IN, Chubugina IV, Oreshkova NV, Echt CS, Islam-Faridi N, Nelson CD (2012c) “Shrinking” the giants: an innovative approach for de novo sequencing of conifer genomes. In: Plant & animal genome XX. The International Conference on the Status of Plant and Animal Genome Research, final program and abstracts guide, W287. January 14–18, 2012 San Diego, CA, USA, p 153. http://pagconfexcom/pag/xx/webprogram/Paper2763html. Cited 12 December 2013
  32. Krutovsky KV, Vaganov EA, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV (2012b) Complex genome sequencing: preliminary data of Siberian larch complete genome de novo sequencing. In: Microsymposium I: computational and experimental genomics. Proceedings of the 8th International Conference on the Bioinformatics of Genome Regulation and Structure\Systems Biology, June 25–29, 2012, Novosibirsk, Russia, p 53. Available at http://confnscru/files/conferences/BGRSSB2012/130321/Program_BGRS_SB_24_06_12pdf. Cited 12 December 2013
  33. Kunakh VA (1999) Variation of the plant genome upon dedifferentiation and callus formation in vitro. Russ J Plant Physiol 46:919–929Google Scholar
  34. Landey RB, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, Herrera JC, Santoni S, Lashermes P, Simpson J, Etienne H (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS ONE 8:e56372CrossRefGoogle Scholar
  35. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214PubMedCrossRefGoogle Scholar
  36. Lelu MA (1987) Variations morphologiques et génétiques chez Picea abies obtenues après embryogenèse somatique. Annales de Recherches Sylvicoles. Association Forêt-Cellulose, Paris, pp 35–47 (in French)Google Scholar
  37. Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes. doi: 10.1007/s11295-013-0620-1 Google Scholar
  38. Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152PubMedCrossRefGoogle Scholar
  39. Marum L, Rocheta M, Maroco J, Oliveira M, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682PubMedCrossRefGoogle Scholar
  40. Mazia D (1961) Mitosis and the physiology of cell division. In: Brachet J, Mirsky A (eds) The cell: biochemistry, physiology, morphology, vol 3. Academic, New York, pp 77–412CrossRefGoogle Scholar
  41. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725PubMedCrossRefGoogle Scholar
  42. Mo LM, von Arnold S, Lagercrantz U (1989) Morphogenic and genetic stability in long term embryogenic cultures and somatic embryos of Norway spruce (Picea abies [L] Karst). Plant Cell Rep 8:375–378PubMedCrossRefGoogle Scholar
  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  44. Nagmani R, Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can J For Res 15:1088–1091CrossRefGoogle Scholar
  45. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620PubMedCrossRefGoogle Scholar
  46. Nkongolo KK, Klimaszewska K (1995) Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix x eurolepis: identification of species-specific chromosomes and synchronization of mitotic cell. Theor Appl Genet 90:827–834PubMedCrossRefGoogle Scholar
  47. Nosov AM (2012) Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624CrossRefGoogle Scholar
  48. O’Brien EW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99CrossRefGoogle Scholar
  49. Orzechowska M, Stępień K, Kamińska T, Siwińska D (2013) Chromosome variations in regenerants of Arabidopsis thaliana derived from 2- and 6-week-old callus detected using flow cytometry and FISH analyses. Plant Cell Tissue Organ Cult 112:263–273CrossRefGoogle Scholar
  50. Park SY (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656CrossRefGoogle Scholar
  51. Park SY, Klimaszewska K, Park JY, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478PubMedCrossRefGoogle Scholar
  52. Patel KR, Berlyn GP (1982) Genetic instability of multiple buds of Pinus coulteri regenerated from tissue culture. Can J For Res 12:93–101CrossRefGoogle Scholar
  53. Pattanavibool R, von Aderkas P, Hanhijärvi A, Simola LK, Bonga JM (1995) Diploidization in megagametophyte-derived cultures of the gymnosperm Larix decidua. Theor Appl Genet 90:671–674PubMedCrossRefGoogle Scholar
  54. Plader W, Malepszy S, Burza W, Rusinowski Z (1998) The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103:9–15CrossRefGoogle Scholar
  55. Prado M, Rodriguez E, Rey L, Gonzalez M, Santos C, Rey M (2010) Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell Tissue Organ Cult 103:49–59CrossRefGoogle Scholar
  56. Rahman M, Rajora O (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536CrossRefGoogle Scholar
  57. Rohit J, Paramod K (2013) Regulation of somatic embryogenesis in crops: a review. Agric Rev 34:1–20Google Scholar
  58. Ryu TH, Yi SI, Kwon YS, Kim BD (2007) Microsatellite DNA somaclonal variation of regenerated plants via cotyledon culture of hot pepper (Capsicum annuum L). Korean J Genet 29:459–464Google Scholar
  59. Salajova T, Salaj J (1992) Somatic embryogenesis in European black pine (Pinus nigra Arn.). Biol Plant 4:213–218CrossRefGoogle Scholar
  60. Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35CrossRefGoogle Scholar
  61. Singh H (1978) Embryology of gymnosperms. In: Zimmerman W, Carlquist Z, Ozenda P, Wulff HD (eds) Handbuch der Pflanzenanatomie. Gebrüder Borntraeger, Berlin, pp 187–241Google Scholar
  62. Smith R (2012) Plant tissue culture: techniques and experiments, 3rd ed. Elsevier, Academic Press. 208 ppGoogle Scholar
  63. Swarnkar PL, Bohra SP, Chandra N (1986) Biochemical changes during growth and differentiation of the callus of Solanum surattense. J Plant Physiol 126:75–81CrossRefGoogle Scholar
  64. Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am J Bot 86:1373–1381PubMedCrossRefGoogle Scholar
  65. Tret’yakova IN, Barsukova AV (2012) Somatic embryogenesis in in vitro culture of three larch species. Russ J Dev Biol 43:353–361CrossRefGoogle Scholar
  66. Tret’yakova IN, Ivanitskaya AC, Ivanova AN, Barsukova AV (2009) Phytohormone content in microstrobiles and androgenic callus of Siberian larch. Russ J Plant Physiol 56:647–653Google Scholar
  67. Tret’yakova IN, Novoselova NV (2003) Specific features of development of megagametophytes and embryos of the Siberian stone pine in vitro. Russ J Dev Biol 34:232–240CrossRefGoogle Scholar
  68. Tretyakova IN, Voroshilova EV (2014) Somatic embryogenesis induction in Siberian pine megagametophytes. Russ For Sci 1:50–55Google Scholar
  69. Tretyakova IN, Vyasovetskova AS, Ivanova AN (2006) Induction of androgenic cultures of Siberian larch (Larix sibirica Ledeb). Eurasian J For Res 9:37–44Google Scholar
  70. Tulecke W (1987) Somatic embryogenesis in woody perennials. In: Bonga JM, Durzan DJ (eds). Cell Tissue Cult For 2:61–91Google Scholar
  71. von Aderkas P, Anderson P (1993) Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua. Physiol Plant 88:73–77CrossRefGoogle Scholar
  72. von Aderkas P, Bonga JM (1988) Formation of haploid embryoids of Larix decidua: early embryogenesis. Am J Bot 75:690–700CrossRefGoogle Scholar
  73. von Aderkas P, Klimaszewska K, Bonga JM (1990) Haploid and diploid embryogenesis in Larix leptolepis, L. decidua and their reciprocal hybrids. Can J For Res 20:9–14CrossRefGoogle Scholar
  74. von Aderkas P, Pattanavibool R, Hristoforoglu K, Ma Y (2003) Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch. Plant Cell Tissue Organ Cult 74:27–34CrossRefGoogle Scholar
  75. Wernicke W, Milkovits L (1986) The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 131:131–141CrossRefGoogle Scholar
  76. Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795PubMedCrossRefGoogle Scholar
  77. Zhang M, Wang H, Dong Z, Qi B, Xu K, Liu B (2010) Tissue culture-induced variation at simple sequence repeats in sorghum (Sorghum bicolor L.) is genotype-dependent and associated with down-regulated expression of a mismatch repair gene, MLH3. Plant Cell Rep 29:51–59PubMedCrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2014

Authors and Affiliations

  • Konstantin V. Krutovsky
    • 1
    • 2
    • 3
    • 4
    Email author
  • Iraida N. Tretyakova
    • 4
    • 5
  • Nataliay V. Oreshkova
    • 4
    • 5
  • Maria E. Pak
    • 5
  • Olga V. Kvitko
    • 5
  • Eugene A. Vaganov
    • 4
    • 6
  1. 1.Department of Forest Genetics and Forest Tree Breeding, Büsgen-InstituteGeorg-August-University of GöttingenGöttingenGermany
  2. 2.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  3. 3.N. I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  4. 4.Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  5. 5.Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of ForestSiberian Branch of Russian Academy of SciencesKrasnoyarskRussia
  6. 6.Department of Ecology and Environmental Studies, Institute of Economics, Management and Environmental StudiesSiberian Federal UniversityKrasnoyarskRussia

Personalised recommendations