Skip to main content
Log in

Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus

  • Protocols/Methods
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

An efficient protocol for transient transformation of avocado embryogenic callus has been established, using the PDS-1000/He system and the reporter gus gene driven by the sunflower polyubiquitin promoter. Best physical parameters for transient transformation were 900 psi helium pressure and 6 cm target distance. The level of transient gus expression was slightly higher when the amount of DNA per shot was increased from 0.6 to 1.8 μg, but it was not significantly modified by the type of microprojectile used (tungsten vs. gold particles). The transient transformation assay developed in this research was used to test the strength of different promoters and the expression of fluorescent reporter genes. Four constitutive promoters, sunflower polyubiquitin, CaMV35S, CaMV35S with enhancer, and rice actin 1, as well as a trichome-specific promoter, ATP, were analyzed. Polyubiquitin and ATP promoters yielded the highest number of gus expressing foci, while no expression was detected with the Act1 promoter from rice. Embryogenic callus was also bombarded with plasmids pXK7S*NF2 and pXK7RNR2, harboring the enhanced green fluorescent gene, EGFP, and the red fluorescent gene DsRed, respectively. Both fluorescent proteins were detected 24 and 72 h after bombardment, but the observed transformation efficiency was slightly higher in GFP bombarded cells. The transient transformation system described here can be used as a fast way to select suitable promoters and/or fluorescent genes needed to undertake stable transformation studies in avocado using currently available protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Binet M. N.; Lepetit M.; Weil J. H.; Tessier L. H. Analysis of a sunflower polyubiquitin promoter by transient expression. Plant Sci 79: 87–94; 1991.

    Article  CAS  Google Scholar 

  • Birch R. G.; Franks T. Development and optimization of microprojectile systems for plant genetic transformation. Aus J Plant Physiol 18: 453–469; 1991.

    Article  CAS  Google Scholar 

  • Calo L.; García I.; Gotor C.; Romero L. C. Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma α-1,3-glucanase. J Exp Bot 57: 3911–3920; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chanderbali A. S.; Albert V. A.; Ashworth V. E. T. M.; Clegg M. T.; Litz R. E.; Soltis D. E.; Soltis P. S. Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. BioEssays 30: 386–39; 2008.

    Article  PubMed  Google Scholar 

  • Christensen A. H.; Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213–218; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Day A. G.; Bejarano E. R.; Buck K. W.; Burrell M.; Lichtenstein C. P. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci USA 88: 6721–6725; 1991.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gutiérrez-Alcalá G.; Calo L.; Gros F.; Caissard J.-C.; Gotor C.; Romero L. C. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J Exp Bot 56: 2487–2494; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hraška M.; Rakouský S.; Čurn V. Green fluorescent protein as a vital marker for nondestructive detection of transformation events in transgenic plants. Plant Cell Tiss Organ Cult 86: 303–318; 2006.

    Article  CAS  Google Scholar 

  • Jefferson R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405; 1987.

    Article  CAS  Google Scholar 

  • Karimi M.; Bleys A.; Vanderhaeghen R.; Hilson P. Building blocks for plant gene assembly. Plant Physiol 145: 1183–1191; 2007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keith B.; Chua N.-H. Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5: 2419–2425; 1986.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leclercq J.; Lardet L.; Martin F.; Chapuset T.; Oliver G.; Montoro P. The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29: 513–522; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Li Z.; Upadhyaya N. M.; Meena S.; Gibbs A. J.; Waterhouse P. M. Comparison of promoters and selectable marker genes for use in Indica rice transformation. Mol Breed 3: 1–14; 1997.

    Article  CAS  Google Scholar 

  • Litz R. E.; Raharjo S. H. T.; Gómez-Lim M. A. Avocado. In: Pua E. C.; Davey M. R. (eds) Transgenic crops V. Biotechnology in agriculture and forestry. Springer, Berlin, pp 167–187; 2007.

    Google Scholar 

  • Lowe B. A.; Prakash N. S.; Way M.; Mann M. T.; Spencer T. M.; Boddupalli R. S. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18: 831–840; 2009.

    Article  PubMed  CAS  Google Scholar 

  • McElroy D.; Blowers A. D.; Jenes B.; Wu R. Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231: 150–160; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Nadolska-Orczyk A.; Pietrusinska A.; Binka-Wyrwa A.; Kuc D.; Orzcyk W. Diploid potato (Solanum tuberosum L.) as a model crop to study transgene expression. Cell Mol Biol Lett 12: 206–219; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Palomo-Ríos E.; Barceló-Muñoz A.; Mercado J. A.; Pliego-Alfaro F. Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell Tiss Organ Cult 109: 201–211; 2012.

    Article  CAS  Google Scholar 

  • Parveez G. K. A.; Majid N. A. Factors affecting green fluorescence protein (GFP) gene expression in oil palm after microprojectile bombardment. J Oil Palm Res 20: 495–507; 2008.

    CAS  Google Scholar 

  • Peremarti A.; Twyman R. M.; Gómez-Galera S.; Naqvi S.; Farré G.; Sabalza M.; Miralpeix B.; Dashevskaya S.; Yuan D.; Ramessar K.; Christou P.; Zhu C.; Bassie L.; Capell T. Promoter diversity in multigene transformation. Plant Mol Biol 73: 363–378; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Barranco G.; Torreblanca R.; Padilla I. M. G.; Sánchez-Romero S.; Pliego-Alfaro F.; Mercado J. A. Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tiss Organ Cult 97: 243–251; 2009.

    Article  CAS  Google Scholar 

  • Pliego-Alfaro F.; Murashige T. Somatic embryogenesis in avocado (Persea americana Mill.) in vitro. Plant Cell Tiss Organ Cult 12: 61–66; 1988.

    Article  CAS  Google Scholar 

  • Punja Z. K. Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can J Plant Pathol 23: 216–235; 2001.

    Article  CAS  Google Scholar 

  • Raharjo S. H. T.; Witjaksono N. F. N.; Gómez-Lim M. A.; Padilla G.; Litz R. E. Recovery of avocado (Persea americana Mill.) plants transformed with the antifungal plant defensin gene PDF1.2. In Vitro Cell Dev Biol – Plant 44: 254–262; 2008.

    Article  CAS  Google Scholar 

  • Sanford J. C.; Smith F. D.; Russell J. A. Optimizing the biolistic process for different biological applications. Method Enzymol 217: 483–509; 1993.

    Article  CAS  Google Scholar 

  • Sokal R. R.; Rohlf F. J. Biometry. WH Freeman and Company, New York; 1995.

    Google Scholar 

  • Stewart C. The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20: 376–382; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Stewart C. Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotech 24: 155–162; 2006.

    Article  CAS  Google Scholar 

  • Tadesse Y.; Sági L.; Swennen R.; Jacobs M. Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tiss Organ Cult 75: 1–18; 2003.

    Article  CAS  Google Scholar 

  • Vain P.; McMullen M. D.; Finer J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12: 84–88; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G.; Schmidt R.; O’Connor-Sanchez A.; Willmitzer L.; Rocha-Sosa M. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Verkhusha V. V.; Kuznetsova I. M.; Stepanenko O. V.; Zaraisky A. G.; Shavlovsky M. M.; Turoverov K. K.; Uversky V. N. High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry 42: 7879–7884; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W.; McElroy D.; Wu R. Analysis of rice Act1 5’ region activity in transgenic rice plants. Plant Cell 3: 1155–1165; 1991.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Ministerio de Ciencia e Innovación of Spain and Feder European Union Funds (grant no. AGL2011-30354-C02-01). We thank Dr. L. Romero (Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Spain) and Dr. R. Wu (Cornell University, USA) for kindly providing the plasmids pATP and pAct1-F, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Mercado.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaparro-Pulido, C.A., Montiel, M.M., Palomo-Ríos, E. et al. Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cell.Dev.Biol.-Plant 50, 292–298 (2014). https://doi.org/10.1007/s11627-013-9564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9564-2

Keywords

Navigation