Skip to main content
Log in

Effect of activated charcoal on multiplication of African yam (Dioscorea cayenensis-rotundata) nodal segments using a temporary immersion bioreactor (RITA®)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In this study, we compared the growth of Dioscorea cayenensis-rotundata (African yam) nodal segments, using semisolid medium in test tubes and liquid medium in 1-L Recipient for Automated Temporary Immersion (RITA®) temporary immersion bioreactors (TIB), and the application of various culture parameters. The addition of activated charcoal (AC) had a positive effect on the growth of nodal segments, both in semisolid medium and in liquid medium in RITA® bioreactors. After 2 mo culture in the presence of AC, plantlets were 6.4–6.6 cm long compared to 3.2–3.8 cm in absence of AC, with no significant difference observed between the culture systems. In the range of inoculation densities tested (5–20 nodal segments per RITA® bioreactor), there was no effect on the number of buds produced per nodal segment, the moisture content of plantlets (fresh weight basis), or on net fresh weight gain. By contrast, the individual leaf surface area of plantlets decreased in line with increasing inoculation density. Among the range of benzylaminopurine (BAP) concentrations tested (0–17.6 μM), 0.44 μM induced the highest number of buds (3.8 buds per nodal segment) in the TIB. However, comparable numbers of buds could be produced with media devoid of BAP, either by increasing the frequency of 1-min daily immersion cycles in RITA® bioreactors from one every 12 h to one every 4 h or by using semisolid medium containing AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Albarrán J.; Bertrand B.; Lartaud M.; Etienne H. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult. 81: 27–36; 2005.

    Article  CAS  Google Scholar 

  • Asiedu R.; Sartie A. Crops that feed the world 1. Yams. Food Secur. 2: 305–315; 2010.

    Article  Google Scholar 

  • Barry-Etienne D.; Bertrand B.; Schlöngvoigt A.; Etienne H. The morphological variability within a population of coffee somatic embryos produced in a bioreactor affects the regeneration and the development of plants in the nursery. Plant Cell Tissue Organ Cult. 68: 153–162; 2002a.

    Article  Google Scholar 

  • Barry-Etienne D.; Bertrand B.; Vasquez N.; Etienne H. Comparison of somatic embryogenesis-derived coffee (Coffea arabica L.) plantlets regenerated in vitro or ex vitro conditions: morphological, mineral and water characteristics. Ann. Bot. 90: 77–85; 2002b.

    Article  PubMed  CAS  Google Scholar 

  • Chu E. P.; Figueiredo-Ribeiro R. C. L. Native and exotic species of Dioscorea used as food in Brazil. Econ. Bot. 45: 467–479; 1991.

    Article  Google Scholar 

  • Degras L. The yam: a tropical root crop. Macmillan, London; 1993. 405 pp.

    Google Scholar 

  • Engelmann F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev. Biol. Plant 47: 5–16; 2011.

    Article  Google Scholar 

  • Etienne H.; Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69: 215–231; 2002.

    Article  Google Scholar 

  • George E. F. Plant propagation by tissue culture. Part 1: the technology. Exegetics, Edington; 1993a.

    Google Scholar 

  • George E. F. Plant propagation by tissue culture. Part 2: in practice. Exegetics, Edington; 1993b.

    Google Scholar 

  • Hussey G. Problems and prospects in the in vitro propagation of herbaceous plants. In: Withers L. A.; Alderson P. G. (eds) Plant tissue culture and its agricultural applications. Butterworths, Boston, pp 69–84; 1986.

    Chapter  Google Scholar 

  • Jova M. C.; Kosky R. G.; Cabrera A. R.; De Feria M.; Pérez M. B.; Vega V. M.; Torres J. L. Performance of yam microtubers from temporary immersion system in field conditions. Afr. J. Biotech. 10: 9268–9271; 2011a.

    Google Scholar 

  • Jova M. C.; Kosky R. G.; Cuellar E. E. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L. ‘Pacala Duclos’). Biotechnol. Agron. Soc. Environ. 15: 515–521; 2011b.

    CAS  Google Scholar 

  • Jova M. C.; Kosky R. G.; Cuellar E. E.; Cuellar A. E. Efficiency of semi-automated culture systems on microtuber formation of yam (Dioscorea alata L.). Biotechnol. Agron. Soc. Environ. 16: 45–47; 2012.

    Google Scholar 

  • Jova M. C.; Kosky R. G.; Morales S. R.; Torres J. L.; Cabrera A. R.; Pérez M. B.; Pino A. S.; Vega V. M.; Rodriguez G. R. Multiplicacion in vitro de segmentos nodales del clon de name Blanco de Guinea (Dioscorea cayenensisD. rotundata) en sistemas de cultivo semiautomatizado. Rev. Col. Biotech. 10: 97–103; 2008 (in Spanish).

    Google Scholar 

  • Jova M. C.; Kosky R. G.; Pérez M. B.; Pino A. S.; Vega V. M.; Torres J. L.; Cabrera A. R.; García M. G.; de Ventura J. C. Production of yam microtubers using a temporary immersion system. Plant Cell Tissue Organ Cult. 83: 103–107; 2005.

    Article  CAS  Google Scholar 

  • Jova M. C.; Pérez M. B.; Nunez Y. T.; Jimenez A. R.; Pino A. S.; Vega V. M.; Cabrera A. R.; Torres J. L.; García M. G.; de Ventura J. C.; Valdes M. O. Empleo de sistemas de inmersion temporal para la multiplicacion de segmentos nodales de Dioscorea alata L. En el clon ‘Pacala Duclos’. Biotec Veg 4: 3–8; 2004 (in Spanish).

    Google Scholar 

  • Mallón R.; Covelo P.; Vieitez A. M. Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation. Trees 26: 731–741; 2012.

    Article  Google Scholar 

  • Mantell S. H.; Hugo S. A. Effects of photoperiod, mineral medium strength, inorganic ammonium, sucrose and cytokinin on root, shoot and microtuber development in shoot cultures of Dioscorea alata L. and D. bulbifera L. yams. Plant Cell Tissue Organ Cult. 16: 23–37; 1989.

    Article  CAS  Google Scholar 

  • Mantell S. H.; Haque S. Q.; Whitehall A. P. Clonal multiplication of Dioscorea alata L. and Dioscorea rotundata Poir. yams by tissue culture. J. Hortic. Sci. 53: 95–98; 1978.

    Google Scholar 

  • Mantell S. H.; Haque S. Q.; Whitehall A. P. Apical meristem tip culture for eradication of flexous rod viruses in yam (Dioscorea alata). Trop. Pest. Manag. 26: 170–179; 1980.

    Article  Google Scholar 

  • McAlister B.; Finnie J.; Watt M. P.; Blakeway F. Use of temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult. 81: 347–358; 2005.

    Article  Google Scholar 

  • Mordocco A. M.; Brumbley J. A.; Lakshmanan P. Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev. Biol. Plant 45: 450–457; 2009.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Ng H. Q.; Ng S.Y.C. Yam field genebank management at IITA. In: Engelmann F (ed). Management of field and in vitro germplasm collections. Proceedings of a Consultation Meeting, 15–20 January 1996, CIAT, Cali, Colombia. International Plant Genetic Resources Institute, Rome, Italy, pp 16–18; 1999.

  • Ng N. Q.; Ng S. Y. C. Approaches for yam germplasm conservation. In: Akoroda M. O. (ed) Root crops for food security in Africa. CTA/ Conseil Phytosanitaire Interafricain IITA, Wageningen, pp 135–140; 1994.

    Google Scholar 

  • Ng S. Y. C.; Ng N. Q. Germplasm conservation in food yams (Dioscorea spp.): constraints, application and future prospects. In: Razdan M. C.; Cocking E. C. (eds) Conservation of plant genetic resources in vitro, vol. 1. General aspects. Science, New Hampshire, pp 257–286; 1997.

    Google Scholar 

  • Niemenak N.; Saare-Surminski K.; Rohsius C.; Ndoumou D. O.; Lieberei R. Regeneration of somatic embryos in Theobroma cacao L. In temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep. 27: 667–676; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pan M. J.; van Staden J. The use of charcoal in in vitro culture—a review. Plant Growth Regul. 26: 155–163; 1998.

    Article  CAS  Google Scholar 

  • Roels S.; Noceda C.; Escalona M.; Sandoval J.; Canal M. J.; Rodriguez R.; Debergh P. The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tissue Organ Cult. 84: 155–163; 2006.

    Article  Google Scholar 

  • Salazar Díaz R.; Hoyos Sánchez R. A. Multiplication and in vitro tuberization of yam (Dioscorea alata L.) in temporary immersion system. Rev. Fac. Nal. Agr. Medellín 60: 3907–3921; 2007 (in Spanish with English abstract).

    Google Scholar 

  • Steinmacher D. A.; Guerra M. P.; Saare-Surminski K.; Lieberei R. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann. Bot. 108: 1463–1475; 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Teisson C.; Alvard D. A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terri M.; Cella R.; Falavigna A. (eds) Current issues in plant molecular and cellular Biology. Kluwer, Dordrecht, pp 105–110; 1995.

    Chapter  Google Scholar 

  • Thomas T. D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 26: 618–631; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Uchendu E. E.; Palyiath G.; Brown D. C. W.; Saxena P. K. In vitro propagation of North American ginseng (Panax quinquefolius L.). In Vitro Cell Dev. Biol. Plant 47: 710–718; 2011.

    Article  CAS  Google Scholar 

  • Watt M. P. The status of temporary immersion system (TIS) technology for plant micropropagation. Afr. J. Biotech. 11: 14025–14035; 2012.

    CAS  Google Scholar 

  • Yan H.; Yang L.; Li Y. Improved growth and quality of Dioscorea fordii Prain et Burk and Dioscorea alata plantlets using a temporary immersion system. Afr. J. Biotech. 10: 19444–19448; 2011.

    Article  CAS  Google Scholar 

  • Yoon Y. J.; Niranjana Murthi H.; Hahn E. J.; Paek K. Y. Biomass production of Anoectochilus formosanus Hayata in a bioreactor system. J. Plant Biol. 50: 573–576; 2007.

    Article  Google Scholar 

  • Ziv M.; Meir G.; Halevy A. H. Factors influencing the production of hardened glaucous carnation plantlets in vitro. Plant Cell Tissue Organ Cult. 2: 55–65; 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Engelmann.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polzin, F., Sylvestre, I., Déchamp, E. et al. Effect of activated charcoal on multiplication of African yam (Dioscorea cayenensis-rotundata) nodal segments using a temporary immersion bioreactor (RITA®). In Vitro Cell.Dev.Biol.-Plant 50, 210–216 (2014). https://doi.org/10.1007/s11627-013-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9552-6

Keywords

Navigation