Skip to main content
Log in

Organelle antioxidants improve microspore embryogenesis in wheat and triticale

  • Anther culture/haploids
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Low frequency of green plant production and albinism limits the use of isolated microspore culture (IMC) in cereal breeding programs. The present study was conducted in triticale and bread wheat IMC to increase the production of green plants and minimize albinism. NPB-99 + 10% Ficoll induction medium was supplemented with mitochondrial or plastid antioxidants, in a completely random design, to evaluate their contribution to successful microspore embryogenesis and green plant production. Each group of antioxidants was tested independently: first in triticale and then validated in various spring wheat genotypes. While the response differed by wheat genotype, induction medium supplemented with proline (10 mM) yielded a greater number of embryos/embryo-like structures and green plants in both triticale and wheat. No differences were found with respect to albinism in triticale or wheat except for the cv. Sadash. Among plastid antioxidants tested, glutathione (2 μM) proved to be the best antioxidant to increase embryo and green plant production. Salicylic acid also helped to reduce the number of albino plants in triticale and the wheat genotype SWS366. Overall, induction medium supplemented with proline or glutathione enhanced microspore embryogenesis in both triticale and wheat and increased the number of green plants in the recalcitrant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Agarwal P, Agarwal P, Custers J, Liu C, Bhojwani S (2006) PCIB an antiauxin enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tissue Organ Cult 86:201–210

    Article  CAS  Google Scholar 

  • Atamna H, Robinson C, Ingersoll R, Elliott H, Ames BN (2001) N-t-butyl hydroxylamine is an antioxidant that reverses age-related changes in mitochondria in vivo and in vitro. FASEB J 15:2196–2204

    Article  PubMed  CAS  Google Scholar 

  • Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN (2008) Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 22:703–712

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Belmonte M, Stasolla C, Loukanina N, Yeung EC, Thorpe TA (2003) Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Sci 165:1377–1385

    Article  CAS  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364

    Article  PubMed  CAS  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    PubMed  CAS  Google Scholar 

  • Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clément C (2000) Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod 13:95–104

    Article  CAS  Google Scholar 

  • Chen CB, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Nat Acad Sci USA 102:3459–3464

    Article  PubMed  CAS  Google Scholar 

  • Cistue L, Romagosa I, Batlle F, Echavarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28:727–735

    Article  PubMed  CAS  Google Scholar 

  • Davies PA (2003) Barley isolated microspore culture (IMC) method. In: Maluszynski M, Kash KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual, 1st edn. Kluwer, Dordrecht, pp 49–52

    Chapter  Google Scholar 

  • De Gara L, de Pinto MC, Moliterni VMC, D'Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  PubMed  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  PubMed  CAS  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tissue Organ Cult 82:233–241

    Article  CAS  Google Scholar 

  • Eudes F, Chugh A (2009) An overview of triticale doubled haploids. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 87–96

    Chapter  Google Scholar 

  • Eudes F, Acharya S, Laroche A, Selinger LB, Cheng KJ (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tissue Organ Cult 73:147–157

    Article  CAS  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tissue Organ Cult 57:79–84

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals—an important defense-mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1: the technology. Exegetics, Edington, 574 pp

    Google Scholar 

  • Gustafson VD, Baenziger PS, Wright MS, Stroup WW, Yen Y (1995) Isolated wheat microspore culture. Plant Cell Tissue Organ Cult 42:207–213

    Article  Google Scholar 

  • Hita O, Gallego P, Villalobos N, Lanas I, Blazquez A, Martin JP, Fernandez J, Martin L, Guerra H (2003) Improvement of somatic embryogenesis in Medicago arborea. Plant Cell Tissue Organ Cult 72:13–18

    Article  CAS  Google Scholar 

  • Hosseini SS (2009) Study of the effects of salicylic acid on somatic embryogenesis of carrot petiole and root secondary phloem in B5 and NL media. MSc. Thesis, University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, Iran

  • Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus cv TOPAS. Plant Cell Rep 8:594–597

    Article  Google Scholar 

  • Hutchinson MJ, Saxena PK (1996) Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium × hortorum Bailey) tissue cultures. Plant Cell Rep 15:512–515

    Article  CAS  Google Scholar 

  • Jahne A, Lorz H (1995) Cereal microspore culture. Plant Sci 109:1–12

    Article  Google Scholar 

  • Kim M, Jang IC, Kim JA, Park EJ, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    Article  PubMed  CAS  Google Scholar 

  • Konzak CF, Polle EA, Liu W, Zheng Y (1999) Methods for generating doubled-haploid plants, US Patent No. US6362393

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Lantos C, Juhász A, Somogyi G, Ötvös K, Vági P, Mihály R, Kristóf Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue Organ Cult 97:285–293

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95–105

    Article  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts: 1. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Meijer EGM, Brown DCW (1988) Inhibition of somatic embryogenesis in tissue-cultures of Medicago sativa by aminoethoxyvinylglycine, amino-oxyacetic acid, 2,4-dinitrophenol and salicylic-acid at concentrations which do not inhibit ethylene biosynthesis and growth. J Exp Bot 39:263–270

    Article  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  PubMed  CAS  Google Scholar 

  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene—effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403

    Article  CAS  Google Scholar 

  • Nitsch C (1974) La culture de pollen isolé sur mileu synthétique. C R Acad Sci Paris 278:1031–1034 (in French)

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C(3) photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Reis E, Batista MT, Canhoto JM (2008) Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg. Protoplasma 232:193–202

    Article  PubMed  CAS  Google Scholar 

  • Robinson JM (1988) Does O2 photoreduction occur within chloroplasts in vivo? Physiol Plant 72:666–680

    Article  CAS  Google Scholar 

  • Santos MA, Camara T, Rodriguez P, Claparols I, Torne JM (1997) Influence of exogenous proline on embryogenic and organogenic maize callus subjected to salt stress. Plant Cell Tissue Organ Cult 47:59–65

    Article  Google Scholar 

  • SAS (2003) Release 9.2. SAS Institute Inc. Cary, NC, USA

  • Sidhu PK, Davies PA (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28:571–577

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA (2001) Ascorbic acid changes the pattern of purine metabolism during germination of white spruce somatic embryos. Tree Physiol 21:359–367

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Belmonte MF, van Zyl L, Craig DL, Liu WB, Yeung EC, Sederoff RR (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709

    Article  PubMed  CAS  Google Scholar 

  • Suprasanna P, Rao KV, Reddy GM (1994) Embryogenic callus in maize—genotypic and amino-acid effects. Cereal Res Commun 22:79–82

    Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, HeberleBors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Tuteja N, Peter Singh L, Gill SS, Gill R, Tuteja R (2012) Salinity stress: a major constraint in crop production. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-Blackwell, Weinheim, pp 71–96

    Chapter  Google Scholar 

  • Varnier AL, Jacquard C, Clement C (2009) Programmed cell death and microspore embryogenesis. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dortrecht, pp 147–154

    Chapter  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    PubMed  CAS  Google Scholar 

  • Vikrant RA (2002) Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tissue Organ Cult 69:71–77

    Article  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, van der Heijden MW, de Priester W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) Decimal code for growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zheng MY (2003) Microspore culture in wheat (Triticum aestivum)-doubled haploid production via induced embryogenesis. Plant Cell Tissue Organ Cult 73:213–230

    Article  CAS  Google Scholar 

  • Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Rep 28:1279–1287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Western Grains Research Foundation, Alberta Crop Industry Development Fund, and Canadian Wheat Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Eudes.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asif, M., Eudes, F., Goyal, A. et al. Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell.Dev.Biol.-Plant 49, 489–497 (2013). https://doi.org/10.1007/s11627-013-9514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9514-z

Keywords

Navigation