Amutha S, Muruganantham M, Ananthakrishnan G, Yablonsky S, Singer S, Gaba V (2009) Improved shoot regeneration due to prolonged seed storage. Sci Hort 119:117–119
Article
CAS
Google Scholar
Bartlett MS (1936) The square root transformation in analysis of variance. J Royal Statist Soc Suppl 3:68–78
Article
Google Scholar
Bartlett MS (1947) The use of transformations. Biometrics 3:39–52
PubMed
Article
CAS
Google Scholar
Borrelli RC, Fogliano V, Monti SM, Ames JM (2002) Characterization of melanoidins from a glucose–glycine model system. Eur Food Res Technol 215:210–215
Article
CAS
Google Scholar
Bosetto M, Arfaioli P, Ugolini FC, Degl’ Innocenti A, Agnelli E, Corti G (2006) Synthesis and characterization of Maillard compounds formed under sterile conditions on sand and silt-sized mineral substrates. Comm Soil Science Plant Anal 37:1043–1058
Article
CAS
Google Scholar
Brands CMJ, Wedzicha BL, van Boekel MAJS (2002) Quantification of melanoidin concentration in sugar–casein systems. J Agric Food Chem 50:1178–1183
PubMed
Article
CAS
Google Scholar
Brudzynski K, Miotto D (2011) The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem 125:570–575
Article
CAS
Google Scholar
Canellas LP, Spaccini R, Piccolo A, Dobbss LB, Okorokova-Facanha AL, Santos GD, Olivares FL, Facanha AR (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174:611–620
Article
CAS
Google Scholar
Compton ME (1994) Statistical methods suitable for analysis of plant tissue culture data. Plant Cell Tiss Org Cult 37:217–242
Google Scholar
Çürük S, Çetiner S, Gaba V (2002) In vitro regeneration of some Turkish melon (Cucumis melo L.) cultivars. Biotechnol Biotechnol Equip 16:39–46
Google Scholar
Dahleen LS, Bregitzer P (2002) An improved media system for high regeneration rates from barley immature embryo-derived callus cultures of commercial cultivars. Crop Sci 42:934–938
Article
Google Scholar
Debeaujon I, Branchard M (1992) Introduction of somatic embryogenesis and caulogenesis from cotyledon and leaf protoplast-derived colonies of melon (Cucumis melo L.). Plant Cell Rep 12:37–40
Article
Google Scholar
El-Bakry AA (2002) Effect of genotype, growth regulators, carbon source and pH on shoot induction and plant regeneration in tomato. In Vitro Cell Dev Biol Plant 38:501–507
Article
CAS
Google Scholar
Elena A, Diane L, Eva B, Marta F, Roberto B, Zamarreno AM, Garcia-Mina JM (2009) The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol Biochem 47:215–223
PubMed
Article
Google Scholar
Facanha AR, Facanha ALO, Olivares FL, Guridi F, Santos GD, Velloso ACX, Rumjanek VM, Brasil F, Schripsema J, Braz R, de Oliveira MA, Canellas LP (2002) Humic acids bioactivity: effects on root development and on the plasma membrane proton pump. Pesquisa Agropecuaria Brasileira 37:1301–1310
Article
Google Scholar
Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164
Article
CAS
Google Scholar
Gaba V, Schlarman E, Elman C, Sagee O, Watad AA, Gray DJ (1999) In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons. In Vitro Cell Dev Biol Plant 35:1–7
Google Scholar
Grandison AS, Lewis MJ (1996) Separation processes in the food and biotechnology industries: principles and applications. Woodhead Publishing, Cambridge
Book
Google Scholar
Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant assays. J Agric Food Chem 53:1841–1856
PubMed
Article
CAS
Google Scholar
Ikan R, Ioselis P, Rubinsztain Y, Aizenshtat Z, Frenkel M, Peters KE (1994) Pyrolysis of natural and synthetic humic substances. J Thermal Anal 42:31–40
Article
CAS
Google Scholar
Ikan R, Ioselis P, Rubinsztain Y, Aizenshtat Z, Pugmire R, Anderson LL (1986) Carbohydrate origin of humic substances. Naturwissensch 73:150–151
Article
CAS
Google Scholar
Ishiwatari R, Morinaga S, Yamamoto S, Machihara T, Rubinsztain Y, Ioselis P, Aizenshtat Z, Ikan R (1986) A study of formation mechanism of sedimentary humic substances. 1. Characterization of synthetic humic substances (melanoidins) by alkaline potassium permaganate oxidation. Organic Geochem 9:11–23
Article
CAS
Google Scholar
Lou H, Kako S (1994) Somatic embryogenesis and plant regeneration in cucumber. Hortscience 29:906–909
Google Scholar
Maillard LC (1912) Formation of humus and combustible minerals without the influence of atmospheric oxygen, microorganisms, high temperatures or high pressure. C R Acad Sci 154:66–68
CAS
Google Scholar
Maillard LC (1917) General reaction between amino acids and sugars: the biological consequences. C R Soc Biol 72:599–601
Google Scholar
Meurer CA, Dinkins RD, Redmond CT, McAllister KP, Tucker DT, Walker DR, Parrott WA, Trick HN, Essig JS, Frantz HM, Finer JJ, Collins GB (2001) Embryogenic response of multiple soybean [Glycine max (L.) Merr.] cultivars across three locations. In Vitro Cell Dev Biol Plant 37:62–67
Google Scholar
Morales FJ (2002) Application of capillary zone electrophoresis to the study of food and food-model melanoidins. Food Chem 76:363–369
Article
CAS
Google Scholar
Morales FJ, Jimenez-Perez S (2004) Peroxyl radical scavenging activity of melanoidins in aqueous systems. Eur Food Res Technol 218:515–520
Article
CAS
Google Scholar
Moreno V, Garcia-Sogo M, Granell I, Garcia-Sogo B, Roig LA (1985) Plant regeneration from calli of melon (Cucumis melo L. cv. ‘Amarillo Oro’). Plant Cell Tiss Org Cult 5:139–146
Article
CAS
Google Scholar
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant 15:473–497
Article
CAS
Google Scholar
Muscolo A, Panuccio MR, Sidari M, Sessi E, Nardi S (2002) Alteration of amino acid metabolism by humic substances during germination of Pinus laricio seeds. Seed Sci Tech 30:205–210
Google Scholar
Nardi S, Panuccio MR, Abenavoli MR, Muscolo A (1994) Auxin-like effect of humic substances extracted from feces of Allolobophora caliginosa and A. rosea. Soil Biol Biochem 26:1341–1346
Article
CAS
Google Scholar
Niedz RP, Smith SS, Dunbar KB, Stephens CT, Murakishi HH (1989) Factors influencing shoot regeneration from cotyledonary explants of Cucumis melo. Plant Cell Tiss Org Cult 18:313–319
Article
Google Scholar
Pinton R, Varanini Z, Vizzotto G, Maggioni A (1992) Soil humic substances affect transport-properties of tonoplast vesicles isolated from oat roots. Plant Soil 142:203–210
Article
CAS
Google Scholar
Poonsapaya P, Nabors MV, Wright K, Vajrabhaya M (1989) A comparison of methods for callus culture and plant regeneration of RD25 rice (Oryza sativa L.) in two laboratories. Plant Cell Tiss Org Cult 16:175–186
Google Scholar
Rufian-Henares JA, de la Cueva SP (2009) Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties. J Agric Food Chem 57:432–438
PubMed
Article
CAS
Google Scholar
Rufian-Henares JA, Morales FJ (2007) Antimicrobial activity of melanoidins. J Food Qual 30:160–168
Article
CAS
Google Scholar
Ruiz-Roca B, Navarro MP, Seiquer I (2008) Antioxidant properties and metal chelating activity of glucose-lysine heated mixtures: relationships with mineral absorption across Caco-2 cell monolayers. J Agric Food Chem 56:9056–9063
PubMed
Article
CAS
Google Scholar
Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S (2011) Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol 12:604–614
Google Scholar
Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Dev Biol Plant 43:51–58
Article
CAS
Google Scholar
Vallés MP, Lasa JM (1994) Agrobacterium-mediated transformation of commercial melon (Cucumis melo L., cv. Amarillo Oro). Plant Cell Rep 13:145–148
Article
Google Scholar
Vignoli JA, Bassoli DG, Benassi MT (2011) Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chem 124:863–868
Article
CAS
Google Scholar