Skip to main content

Statistical medium optimization for enhanced azadirachtin production in hairy root culture of Azadirachta indica

Abstract

Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  1. Allan E.; Eeswara J.; Jarvis A.; Mordue (Luntz) A.; Morgan E.; Stuchbury T. Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Rep. 21: 374–379; 2002.

    Article  CAS  Google Scholar 

  2. Amaral P. F. F.; Almeida A. P. R.; Peixoto T.; Rocha-Leão; Coutinho J. A. P.; Coelho M. A. Z. Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World J. Microbiol. Biotechnol. 23: 339–344; 2007.

    Article  CAS  Google Scholar 

  3. Balaji K.; Veeresham C.; Srisilam K.; Kokate C. Azadirachtin, a novel biopesticide from cell cultures of Azadirachta indica. J. Plant Biotechnol. 5: 121–129; 2003.

    Google Scholar 

  4. Box G. E. P.; Meyer R. D. Some new ideas in the analysis of screening designs. J. Res. Nat. Bur. Stand. 90: 495–502; 1985.

    Google Scholar 

  5. Buitelaar R. M.; Tramper J. Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J. Biotechnol. 23: 111–141; 1992.

    Article  CAS  Google Scholar 

  6. Chattopadhyay S.; Srivastava A. K.; Bisaria V. S. Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Appl. Biochem. Biotechnol. 102–103: 381–393; 2002.

    PubMed  Article  Google Scholar 

  7. Chauhan K.; Trivedi U.; Patel K. C. Application of Response Surface Methodology for Optimization of Lactic Acid Production Using Date Juice. J. Microbiol. Biotechnol. 16: 1410–1415; 2006.

    CAS  Google Scholar 

  8. Dubois M.; Gilf K. A.; Hamilton J. K.; Roberts P. A.; Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356; 1956.

    Article  CAS  Google Scholar 

  9. Elibol M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39: 1057–1062; 2004.

    Article  CAS  Google Scholar 

  10. Gaden E. L. Improved shaken flask performance. Biotechnol. Bioeng. 4: 99–103; 1962.

    Article  Google Scholar 

  11. Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    PubMed  Article  CAS  Google Scholar 

  12. Giri A.; Narasu M. L. Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 18: 1–22; 2000.

    PubMed  Article  CAS  Google Scholar 

  13. Govindchari T. R. Chemistry and biological investigation on Azadirachta indica (the neem tree). Curr. Sci. 63: 117–122; 1992.

    Google Scholar 

  14. Han Y.; Li Z. Y.; Miao X. L.; Zhang F. L. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 43: 1088–1093; 2008.

    Article  CAS  Google Scholar 

  15. Hymavathi M.; Sathish T.; Brahmaiah P.; Prakasham R. S. Impact of carbon and nitrogen sources on L-asparaginase production by isolated Bacillus circulans (MTCC 8574): Application of saturated Plackett–Burman design. Chem. Biochem. Eng. Q. 24: 473–480; 2010.

    CAS  Google Scholar 

  16. Jin K. S.; Lee H. K.; Yim J. H. Statistical optimization of medium components for the production of prodigiosin by Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 18: 1903–1907; 2008.

    Google Scholar 

  17. Kanokwaree K.; Doran P. M. The extent to which external oxygen transfer limits growth in shake flask culture of hairy roots. Biotechnol. Bioeng. 55: 520–526; 1997.

    PubMed  Article  CAS  Google Scholar 

  18. Kiran R. R. S.; Konduri R.; Rao G. H.; Madhu G. M. Statistical optimization of endo-polygalacturonase production by overproducing mutants of Aspergillus niger in solid-state fermentation. J. Biochem. Tech. 2: 154–157; 2010.

    Google Scholar 

  19. Kumar S. S.; Gupta R. An extracellular lipase from Trichosporon asahii MSR 54: medium optimization and enantioselective deacetylation of phenyl ethyl acetate. Process Biochem. 43: 1054–1060; 2008.

    Article  CAS  Google Scholar 

  20. Lu W.; Li J.; Yu P. Optimization of critical medium components for higher phycocyanin holo-α subunit production in Escherichia coli using statistical approach. African J. Biotechnol. 8: 4251–4259; 2009.

    CAS  Google Scholar 

  21. Mordue A. J.; Blackwell A. Azadirachtin: an update. J. Insect. Physiol. 39: 903–924; 1993.

    Article  CAS  Google Scholar 

  22. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  23. Naveena B. J.; Altaf M.; Bhadriah K.; Reddy G. Selection of medium components by Plackett–Burman design for production of L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Biores. Technol. 96: 485–490; 2005.

    Article  CAS  Google Scholar 

  24. Plackett R. L.; Burman J. P. The design of optimum multifactorial experiments. Biometrika 33: 305–325; 1946.

    Article  Google Scholar 

  25. Prakash G.; Bhojwani S. S.; Srivastava A. K. Production of azadirachtin from plant tissue culture: State of the art and future prospects. Biotechnol. Bioprocess Eng. 7: 185–193; 2002.

    Article  CAS  Google Scholar 

  26. Prakash G.; Emmannuel C. J. S. K.; Srivastava A. K. Variability of azadirachtin in Azadirachta indica (neem) and batch kinetics studies of cell suspension culture. Biotechnol. Bioprocess Eng. 10: 198–204; 2005.

    Article  CAS  Google Scholar 

  27. Prakash G.; Srivastava A. K. Statistical media optimization for cell growth and azadirachtin production in Azadirachta indica (A. Juss) suspension cultures. Process Biochem. 40: 3795–3800; 2005.

    Article  CAS  Google Scholar 

  28. Prakash G.; Srivastava A. K. Modeling of azadirachtin production by Azadirachta indica and its use for feed forward optimization studies. Biochem. Eng. 29: 62–68; 2006.

    Article  CAS  Google Scholar 

  29. Prakash G.; Srivastava A. K. Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem. 42: 93–97; 2007.

    Article  CAS  Google Scholar 

  30. Prakash G.; Srivastava A. K. Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochem. Eng. J. 40: 218–226; 2008.

    Article  CAS  Google Scholar 

  31. Prakasham R. S.; Rao C. S.; Rao R. S.; Lakshmi G. S.; Sarma P. N. L-asparaginase production by isolated Staphylococcus sp. – 6A: design of experiment considering interaction effect for process parameter optimization. J. Appl. Microbiol. 102: 1382–1391; 2007.

    PubMed  Article  CAS  Google Scholar 

  32. Rajendran A.; Palanisamy A.; Thangavelu V. Evaluation of medium components by Plackett–Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese J. Biotechnol. 24: 436–444; 2008.

    Article  CAS  Google Scholar 

  33. Rao K. J.; Kim C. H.; Rhee S. K. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35: 639–647; 2000.

    Article  CAS  Google Scholar 

  34. Raval K. N.; Hellwing S.; Prakash G.; Plasencia R. A.; Srivastava A.; Buchs J. Necessity of a two-stage process for the production of Azadirachtin related limonoids in suspension cultures of Azadirachta indica. J. Biosci. Bioeng. 96: 16–22; 2003.

    PubMed  CAS  Google Scholar 

  35. Satdive R. K.; Fulzele D. P.; Eapen S. Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J. Biotechnol. 128: 281–289; 2007.

    PubMed  Article  CAS  Google Scholar 

  36. Sayyad S. A.; Panda B. P.; Javed S.; Ali M. Screening of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using Plackett–Burman design. Res. J. Microbiol. 2: 601–605; 2007.

    Article  CAS  Google Scholar 

  37. Schmutterer H. Properties and potential of natural pesticides from the Neem trees. Azadirachta indica. Ann. Rev. Entomol. 35: 271–297; 1990.

    Article  CAS  Google Scholar 

  38. Srivastava S.; Srivastava A. K. Studies on phosphate uptake by Acinetobacter calcoaceticus under aerobic conditions. Enzyme Microb. Tech. 36: 362–368; 2005.

    Article  CAS  Google Scholar 

  39. Srivastava S.; Srivastava A. K. Hairy roots: A novel source for large-scale production of high-value secondary metabolites. Crit. Rev. Biotechnol. 27: 29–43; 2007.

    PubMed  Article  CAS  Google Scholar 

  40. Srivastava S.; Srivastava A. K. Recent advances of in vitro azadirachtin production. In: Ramawat K. G.; Merillon J. M. (eds) Biotechnology: Bioactive molecules and medicinal plants. Springer, Heidelberg, pp 234–250; 2008.

    Google Scholar 

  41. Theodore K.; Panda T. Application of response surface methodology to evaluate the influence of temperature and initial pH on the production of β-1,3-glucanase and carboxymethylcellulase from Trichoderma harzianum. Enzyme Microb. Tech. 17: 1043–1049; 1995.

    Article  CAS  Google Scholar 

  42. Tyssedal J.; Samset O. Analysis of the 12 run Plackett–Burman design. Technical Report 8, Department of Mathematical Sciences. The Norwegian University of Science and Technology, Trondheim, Norway; 1997.

    Google Scholar 

Download references

Acknowledgement

The financial support by Department of Biotechnology, Ministry of Science and Technology, New Delhi (India) for the execution of above project is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Srivastava.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srivastava, S., Srivastava, A.K. Statistical medium optimization for enhanced azadirachtin production in hairy root culture of Azadirachta indica . In Vitro Cell.Dev.Biol.-Plant 48, 73–84 (2012). https://doi.org/10.1007/s11627-011-9395-y

Download citation

Keywords

  • Azadirachtin
  • Hairy roots
  • Azadirachta indica
  • Medium composition
  • Plackett–Burman design
  • Response surface methodology