Skip to main content
Log in

Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript


Chrysanthemum is one of the most important commercial cut flowers in the world. Early-flowering cultivars are required to produce quality chrysanthemum flowers with a lower cost of production. To shorten the vegetative growth phase of chrysanthemum, three AP1-like genes from Asteraceae were constitutively overexpressed in 80 independent transgenic chrysanthemum lines. All lines were characterized by PCR and RT-PCR and demonstrated that overexpression of compositae AP1-homologs in transgenic chrysanthemum under long-day conditions had no effect on plant development compared to non-transgenic controls. Conversely, under short-day conditions, transgenic plants commenced bud initiation 2 wk earlier than non-transgenic chrysanthemum plants. Subsequently, transgenic chrysanthemum flowers showed color earlier and resulted in full opening of inflorescences 3 wk prior to non-transgenic control plants. These results open new possibilities for genetic improvement and breeding of chrysanthemum cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2.
Figure 3.
Figure 4

Similar content being viewed by others


  • Amazino R. Seasonal and developmental timing of flowering. Plant J 61: 1001–1013; 2010.

    Article  Google Scholar 

  • Anderson N. O. Chrysanthemum (Dendranthema x grandiflora Tzvelv.). In: Anderson N. O. (ed) Flower breeding and genetics. Springer, Berlin, pp 389–437; 2007.

    Google Scholar 

  • Blazquez M. A.; Ferrandiz C.; Madueno F.; Parcy F. How floral meristems are built. Plant Mol Biol 60: 855–870; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chandler J.; Crobesier L.; Spielmann P.; Dettendorfer D.; Stahl D.; Apel K.; Melzer S. Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed 15: 87–94; 2005.

    Article  Google Scholar 

  • Ellul P.; Angosto T.; Garcia-Sogo B.; Garcia-Hurtado N.; Martin-Trillo M.; Salinas M.; Moreno V.; Lozano R.; Martinez-Zapater J. M. Expression of Arabidopsis APETALA1 on tomato reduces its vegetative cycle without affecting plant production. Mol Breed 13: 155–163; 2004.

    Article  CAS  Google Scholar 

  • Goloveshkina E. N.; Shul’ga O. A.; Shchennikova A. V.; Kamionskaya A. M.; Skryabin K. G. Constitutive Expression of the Sunflower and Chrysanthemum Genes of the AP1/FUL Group Changes Flowering Timing in Transgenic Tobacco Plants. Dokl Biol Sci 434: 322–324; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Han B. H.; Lee S. Y.; Choi S. Y. MdMADS2 – transgenic chrysanthemum (Dendrathema grandiflorum (Ramat.) Kitamura) showing the reduction of the days to flowering. J Plant Biotechnol 36: 366–372; 2009.

    Article  Google Scholar 

  • He Z.; Zhu Q.; Dabi T.; Li D.; Weigel D.; Lamb C. Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res 9: 223–227; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hofgen R.; Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucl Acids Res 16: 9877; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Immink R. G. H.; Gadella T. W. J.; Ferrario S.; Busscher M.; Angenent G. C. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci USA 99: 2416–2421; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jang S.; An K.; Lee S.; An G. Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43: 230–238; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jung C.; Müller A. Flowering time control and applications in plant breeding. Trends in Plant Sci 14: 563–573; 2009.

    Article  CAS  Google Scholar 

  • Koornneef M.; Alonso-Blanco A.; Peeters A. J. M.; Soppe W. Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol 49: 345–370; 1998.

    Article  CAS  Google Scholar 

  • Kotoda N.; Wada M.; Masuda T.; Soejima J. The break-through in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic (ISHS) 625: 337–343; 2003.

    CAS  Google Scholar 

  • Li T.; Niki T.; Nishijima T.; Douzono M.; Koshioka M.; Hisamatsu T. Roles of CmFL, CmAFL1, and CmSOC1 in the transition from vegetative to reproductive growth in Chrysanthemum morifolium Ramat. J Hort Sci Biotech 84: 447–453; 2009.

    CAS  Google Scholar 

  • Litt A.; Irish V. F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821–833; 2003.

    PubMed  CAS  Google Scholar 

  • Ma Y. P.; Fang X. H.; Chen F.; Dai S. L. DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Rep 27: 647–654; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mitiouchkina T.; Dolgov S. V.; Zavriev K.; Kharchenko P. N. Molecular biology approach for improving chrysanthemum resistance to virus B. Acta Hortic (ISHS) 722: 327–332; 2006.

    CAS  Google Scholar 

  • Mouradov A.; Cremer F.; Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14: 111–130; 2002.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Quoirin M.; Lepoivre P. Improved medium for in vitro culture of Prunus sp. Acta Hortic 78: 437–442; 1977.

    Google Scholar 

  • Revenkova E. V.; Kraev A. S.; Skryabin K. G. Construction of a disarmed derivative of the supervirulent Ti plasmid pTiBo542. In: Skryabin K. G. (ed) Plant biotechnology and molecular biology. Pushchino Research Centre, Moscow, pp 67–76; 1993.

    Google Scholar 

  • Shchennikova A. V.; Shulga O. A.; Immink R.; Skryabin K. G.; Angenent G. C. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134: 1632–1641; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Shulga O. A.; Shchennikova A. V.; Angenent G. C.; Skryabin K. G. MADS-box genes controlling inflorescence morphogenesis in sunflower. Russian J Dev Biol 39: 2–5; 2008.

    Article  CAS  Google Scholar 

  • van Engelen F. A.; Molthoff J. W.; Conner A. J.; Nap J.; Pereira A.; Stiekema W. J. pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4: 288–290; 1995.

    Article  PubMed  Google Scholar 

  • Yu D.; Kotilainen M.; Pöllänen E.; Mehto M.; Elomaa P.; Helariutta Y.; Albert V. A.; Teeri T. H. Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17: 51–62; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yu H.; Goh C. J. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. J Plant Physiol 123: 1325–1336; 2000.

    Article  CAS  Google Scholar 

  • Weigel D.; Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olga A. Shulga.

Additional information

Editor: N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulga, O.A., Mitiouchkina, T.Y., Shchennikova, A.V. et al. Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants. In Vitro Cell.Dev.Biol.-Plant 47, 553–560 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: