Skip to main content

A WD-repeat gene from peach (Prunus persica L.) is a functional ortholog of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1


We have cloned a WD-repeat gene from peach. The cloned gene is more than 3 kb and contains signature domains characteristic of WD-repeat genes. Because of its high homology with AtTTG1, we hypothesized that this gene could be a TTG1 ortholog in peach. Functional studies were carried out by complementing the trichome minus Arabidopsis ttg1-1 mutant with the putative peach TTG1 homolog. Successful restoration of normal trichomes was achieved in the resulting transgenics. We further tested the possibility that this gene was the candidate gene differentiating peach and nectarine. Sequence analysis indicated no difference in the full-length TTG1 and 1,600 bp of its promoter between peach and nectarine.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.


  1. Bielenberg D. G.; Wang Y.; Fan S.; Reighard G. L.; Scorza R.; Abbott A. G. A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J. Hered. 95: 436–444; 2004.

    PubMed  Article  CAS  Google Scholar 

  2. Brueggemann J.; Weisshaar B.; Sagasser M. A WD40-repeat gene from Malus x domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Reports 29(3): 285–294; 2010.

    PubMed  Article  CAS  Google Scholar 

  3. Carey C. C.; Strahle J. T.; Selinger D. A.; Chandler V. L. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16: 450–464; 2004.

    PubMed  Article  CAS  Google Scholar 

  4. Clough S. J.; Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743; 1998.

    PubMed  Article  CAS  Google Scholar 

  5. Cokol M.; Nair R.; Rost B. Finding nuclear localization signals. EMBO Rep. 1(5): 411–415; 2000.

    PubMed  Article  CAS  Google Scholar 

  6. Daraselia N. D.; Tarchevskaya S.; Narita J. O. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiol. 112(2): 727–733; 1996.

    PubMed  Article  CAS  Google Scholar 

  7. Gasic K.; Hernandez A.; Korban S. S. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter 22: 437–438; 2004.

    Article  CAS  Google Scholar 

  8. Guan X. Y.; Li Q. J.; Shan C. M.; Wang S.; Mao Y. B.; Wang L. J.; Chen X. Y. The HD-Zip IV gene GaHOX1 from cotton is a functional homolog of the Arabidopsis GLABRA2. Physiol. Plant. 134: 174–182; 2008.

    PubMed  Article  CAS  Google Scholar 

  9. Hiller M.; Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends in Genetics 24: 246–255; 2008.

    PubMed  Article  CAS  Google Scholar 

  10. Humphries J. A.; Walker A. R.; Timmis J. N.; Orford S. J. Two WD-repeat genes from cotton are functional homologs of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Molecular Biology 57: 67–81; 2005.

    PubMed  Article  CAS  Google Scholar 

  11. Ishida T.; Hattori S.; Sano R.; Inoue K.; Shirano Y.; Hayashi H.; Shibata D.; Kato S. T.; Tabata S.; Okada K.; Wada T. Arabidopsis Transparent Testa Glabra2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19: 2531–2543; 2007.

    PubMed  Article  CAS  Google Scholar 

  12. Kieleczawa J. Fundamentals of sequencing of difficult templates: an overview. J. Biomol. Tech. 17: 207–217; 2006.

    PubMed  Google Scholar 

  13. Lescot M.; Dehais P.; Thijs G.; Marchal K.; Moreau Y.; Van de Peer Y.; Rouze P.; Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30: 325–327; 2002.

    PubMed  Article  CAS  Google Scholar 

  14. Lodish H.; Berk A.; Matsudaira P.; Kaiser C. A.; Krieger M.; Scott M. P.; Zipursky S. L.; Darnell J. Molecular cell biology. 5th ed. Freeman & Co, New York; 2004.

    Google Scholar 

  15. Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15(3): 473–497; 1962.

    Article  CAS  Google Scholar 

  16. Payne C. T.; Zhang F.; Lloyd A. M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156: 1349–1362; 2000.

    PubMed  CAS  Google Scholar 

  17. Pérez-Clemente R. M.; Pérez-Sanjuán A.; García-Férriz L.; Beltrán J.; Canas L. A. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol. Breed. 14(4): 419–427; 2005.

    Article  Google Scholar 

  18. Schellmann S.; Hulskamp M. Epidermal differentiation: Trichomes in Arabidopsis as a model system. Int. J. Dev. Biol. 49: 579–584; 2005.

    PubMed  Article  Google Scholar 

  19. Schellmann S.; Hulskamp M.; Uhrig J. Epidermal pattern formation in the root and shoot of Arabidopsis. Biochem. Soc. Trans. 35: 146–148; 2007.

    PubMed  Article  CAS  Google Scholar 

  20. Smith T. F. Diversity of WD-repeat proteins. Subcell. Biochem. 48: 20–30; 2008.

    PubMed  Article  Google Scholar 

  21. Walker A. R.; Davison P. A.; Bolognesi-Winfield A. C.; James C. M.; Srinivasan N.; Blundell T. L.; Esch J. J.; Marks M. D.; Gray J. C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 11: 1337–1350; 1999.

    PubMed  Article  CAS  Google Scholar 

  22. Weigel D.; Glazebrook J. Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harbor Protocols. doi:10.1101/pdb.prot4666; 2006.

  23. Wen I. C.; Sherman W. B.; Koch K. E. Heritable pleiotropic effects of the nectarine mutant from peach. J. Am. Soc. Hortic. Sci. 120: 721–725; 1995.

    Google Scholar 

  24. Yu L.; Gaitatzes C. G.; Neer E. J.; Smith T. F. Thirty-plus functional families from a single motif. Protein Science 9: 2470–2476; 2000.

    PubMed  Article  CAS  Google Scholar 

  25. Zhang F.; Gonzalez A.; Zhao M.; Payne C. T.; Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859–4869; 2003.

    PubMed  Article  CAS  Google Scholar 

  26. Zhao M. F.; Morohashi K.; Morohashi K.; Hatlestad G.; Grotewold E.; Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135: 1991–1999; 2008.

    PubMed  Article  CAS  Google Scholar 

Download references


We acknowledge Dr. Alan Lloyd, Texas A&M University, who kindly provided the Arabidopsis ttg1-1 mutant seeds. In addition, we would like to acknowledge the Iranian Ministry of Higher Education (AT), CFI, OIT, OMAFRA, and OTFMB (SJ) for the financial support of this research.

Author information



Corresponding author

Correspondence to Subramanian Jayasankar.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taheri, A., Jayasankar, S., Cline, J.A. et al. A WD-repeat gene from peach (Prunus persica L.) is a functional ortholog of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 . In Vitro Cell.Dev.Biol.-Plant 48, 23–29 (2012).

Download citation


  • Arabidopsis
  • Fruit fuzz
  • Mutant complementation
  • Peach
  • Trichome
  • TTG1