Skip to main content
Log in

Multiple inserts of gene of interest and selectable marker gene are co-integrated and stably transmitted as a single genetic locus in transgenic soybean plants

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Particle bombardment has been used for soybean transformation for more than 20 yr, but the integration and segregation of transgene inserts in the soybean genome have not been clearly documented. Over the past 5 yr, we processed several hundred transgenic events. In each experiment, the expression cassettes of the gene of interest (GOI) and hygromycin selectable marker gene (SMG) were co-bombarded into soybean at a 1:1 molecular ratio. More than 75% of hygromycin-resistant events also carried the GOI. Molecular analysis of transgenic plants revealed that most events carried multiple inserts of the GOI and the SMG. The GOI and the SMG were linked in selfed T1 and T2 progeny. Segregation analysis of progeny indicated that, in over 98% of the transgenic events, the multiple inserts of the GOI were integrated into the same genetic locus resulting in a 3:1 segregation ratio. Furthermore, the multiple inserts of the GOI are transmitted into succeeding generations, and no recombinants were found. These data indicate that in soybean plants, co-bombarded genes are preferentially integrated and stably segregated as a single genetic locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Broun P.; Boddupalli S.; Somerville C. A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J. 13: 201–210; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Coe E. H. Genetic experiments and mapping. In: The Maize Handbook, Eds. M. Freeling and V. Walbot, Springer-Verlag, New York, Inc. 1994.

  • Christou P.; Vain P.; Kohli A.; Leech M.; Oard J.; Lincombe S. Introduction of multiple genes into elite rice varieties-evaluating of transgen stability, gene expression, and field performance of herbicide-resistant transgenic plants, in: Rice Genetics III. IRRI, Manila, Philippines, pp 223–238; 1996.

    Google Scholar 

  • Chen L.; Marmey P.; Taylor N. J.; Brizard J. P.; Espinoza C.; D’Cruz P.; Huet H.; Zhang S.; de Kochko A.; Beachy R. N.; Fauquet C. M. Expression and inheritance of multiple transgenes in rice plants. Nat. Biotech 16: 1060–1064; 1998.

    Article  CAS  Google Scholar 

  • Cluster P. D.; O’Dell M.; Metzlaff M.; Flavell R. B. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol. Biol. 32: 1197–1203; 1996.

    Article  PubMed  CAS  Google Scholar 

  • De Buck S.; De Wilde C.; Van Montagu M.; Depicker A. Determination of the T-DNA ransfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant Microbe Interact 13: 658–665; 2000.

    Article  PubMed  Google Scholar 

  • De Veylder L.; Beeckman T.; Beemster G. T. S.; Krols L.; Terras F.; Landrieu I.; Van Der Schueren E.; Maes S.; Naudts M.; Inzé D. Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell 13: 1653–1668; 2001.

    Article  PubMed  Google Scholar 

  • Doyle J. J.; Doyle J. L. Isolation of plant DNA from fresh tissue. Focus 12(1): 13–15; 1990.

    Google Scholar 

  • Hadi M. Z.; McMullen M. D.; Finer J. J. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15: 500–505; 1995.

    Article  Google Scholar 

  • Hare P. D.; Chua N.-H. Excision of selectable marker genes from transgenic plants. Nat. Biotechnol. 20: 575–580; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hirner B.; Fischer W. N.; Bentsch D.; Kwart M.; Frommer W. B. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J. 14: 535–544; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hohn B.; Levy A. A.; Puchta H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12: 139–143; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein D. A.; Tinland B.; Gilbertson L. A.; Staub J. M.; Bannon G. A.; Goodman R. E. et al. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J. Appl. Microbiol. 99: 7–23; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gritz L.; Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kohli A.; Leech M.; Vain P.; Laurie D. A.; Christou P. Transgene organization in rice engineering through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. U. S. A. 95: 7203–7208; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kononov M. E.; Bassuner B.; Gelvin S. B. Integration of TDNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11: 945–957; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kroj T.; Savino G.; Valon C.; Giraudat J.; Parcy F. Regulation of storage protein gene expression in Arabidopsis. Development 130: 6065–6073; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lange M.; Vincze E.; Moller M. G.; Holm P. B. Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep. 25: 815–820; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Li R. G.; Rimmer R.; Yu M.; Sharpe A. G.; Se’guin-Swartz G.; Lydiate D.; Hegedus D. D. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217: 299–308; 2003.

    PubMed  CAS  Google Scholar 

  • Naqvi S.; Farre G.; Sanahuja G.; Capell T.; Zhu C.; Christou P. When more is better: multigene engineering in plants. Trends Plant Sci. 15: 48–56; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Olhoft P. M.; Flagel L. E.; Somers D. A. T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonarynode method. Plant Biotechnol. J. 2: 289–300; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Petolino J. F.; Worden A.; Curlee K.; Connell J.; Strange Moynahan T. L.; Larsen C.; Russell S. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 73: 617–628; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Radchuk V. V.; Van D. T.; Klocke E. Multiple genes co-integration in Arabidopsis thaliana predominatly occus in the same gentic locus after simultaneous in planta transformation with distinct Agrobacterium tumefaciens strains. Plant Sci. 168: 1515–1523; 2005.

    Article  CAS  Google Scholar 

  • Ratcliffe O. J.; Riechmann J. L.; Zhang J. Z. Interfascicular Fiberless1 is the same gene as REVOLUTA. Plant Cell 12: 315–317; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M. A.; LaFayette P. R.; Artelt B. A.; Parrott W. A. A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment. In Vitro Cell Dev Biol Plant 44: 162–168; 2008.

    CAS  Google Scholar 

  • Simmonds D. Genetic transformation of soybean with biolistics. In: Jackson J. F.; Linskens H. F. (eds) Genetic Transformation of Plants. Molecular methods of plant analysis, vol 23. Springer, Berlin Heidelberg New York, pp 159–174; 2003.

    Google Scholar 

  • Talbert P. B.; Adler H. T.; Parks D. W.; Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliania. Development 121: 2723–2735; 1995.

    PubMed  CAS  Google Scholar 

  • Trick H. N.; Dinkins R. D.; Santarem E. R.; Di R.; Samoylov V. M.; Meurer C.; Walker D.; Parrott W. A.; Finer J. J.; Collins G. B. Recent advances in soybean transformation. Plant Tissue Cult Biotechnol. 3: 9–26; 1997.

    Google Scholar 

  • Wakita Y.; Otani M.; Iba K.; Shimada T. Co-integration, co-expression and co-segregation of an unlinked selectable marker genes and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Geneti. Syst. 73: 219–226; 1998.

    Article  CAS  Google Scholar 

  • Wu G.; Truksa M.; Datla N.; Vrinten P.; Bauer J.; Zank T. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotech. 23: 1013–1017; 2005.

    Article  CAS  Google Scholar 

  • Wu L.; Nandi S.; Chen L.; Rodriguez R. L.; Huang N. Expression and inheritance of nine transgenes in rice. Transgenic Res. 11: 533–541; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ye X. D.; Al-Babili S.; Kloti A.; Zhang J.; Lucca P.; Beyer P.; Potrykus I. Engineering the provitamin A (beta-carotene) biosynthesis pathway into (carotenoid-free) rice endosperm. Science 287: 303–305; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Yin Z.; Wang G. L. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor. Appl. Genet. 100: 461–470; 2000.

    Article  CAS  Google Scholar 

  • Zhang J.; Cai L.; Cheng J.; Mao H.; Fan X.; Meng Z.; Chan K.-M.; Zhang H.; Qi J.; Ji L.; Hong Y. Transgene integration and organization in Cotton (Gossypium hirsutum L.) genome. Transgenic Res. 17: 293–306; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhu C.; Naqvi S.; Breitenbach J.; Sandmann G.; Christou P.; Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. PNAS 105: 18232–18237; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daina Simmonds.

Additional information

Editor: N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Bancroft, B., Hutcheon, C. et al. Multiple inserts of gene of interest and selectable marker gene are co-integrated and stably transmitted as a single genetic locus in transgenic soybean plants. In Vitro Cell.Dev.Biol.-Plant 47, 274–281 (2011). https://doi.org/10.1007/s11627-011-9359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9359-2

Keywords

Navigation