Variations in vinblastine production at different stages of somatic embryogenesis, embryo, and field-grown plantlets of Catharanthus roseus L. (G) Don, as revealed by HPLC

  • Junaid Aslam
  • Abdul MujibEmail author
  • Zohra Fatima
  • Maheshwar Prasad Sharma


Catharanthus roseus L. (G) Don. is an important dicotyledonous medicinal plant that produces anticancer compounds, which are used for the treatment of a wide variety of cancers. We have quantified vinblastine (a major dimeric anticancer compound) in various in vitro raised tissues; embryogenic and nonembryogenic calli, three different embryogenic stages (proliferated, matured, and germinating embryo), somatic embryo derived plantlets and in ex vitro grown plantlets by using high performance liquid chromatography. Of the various obtained callus lines and embryogenesis stages, maximum vinblastine content was found in leaf callus and in germinating embryos. The leaves of somatic embryo-derived plantlets contained more vinblastine than did Catharanthus leaves developed ex vitro. The yield of vinblastine was monitored for 30 wk. The production of vinblastine appeared to be age dependent and tissue specific; the finding of our analyses is discussed in detail.


Apocynaceae Catharanthus roseus Embryogenic callus High performance liquid chromatography Somatic embryogenesis Tissue culture Vinblastine 



The first author is highly grateful to AFMI for getting fellowship during the course of present study.


  1. Bhat M. A.; Ahmad S.; Junaid A.; Mujib A.; Mahmooduzzafar. Salinity stress enhanced production of solasodine in Solanum nigrum L. Chem. Pharm. Bull. 56(1): 17–21; 2008.CrossRefPubMedGoogle Scholar
  2. Chu I.; Bodnar J. A.; White E. L.; Bowman R. N. Quantification of vincristine and vinblastine in Catharanthus roseus plants by capillary zone electrophoresis. J. Chromatogr. 755: 281–288; 1996.CrossRefGoogle Scholar
  3. Datta A.; Srivastava P. S. Variation in vinblastine production by Catharanthus roseus during in vivo and in vitro differentiation. Phytochemistry 46: 135–137; 1997.CrossRefGoogle Scholar
  4. De Luca V.; Balsevich J.; Tyler R. T.; Eilert U.; Panchuk B. D.; Kurz W. G. W. Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J. Plant Physiol. 125: 147–156; 1986.Google Scholar
  5. Endo T.; Goodbody A.; Vikovic J.; Misawa M. Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med. 53: 479–482; 1987.CrossRefPubMedGoogle Scholar
  6. Favretto D.; Piovan A.; Filippini R.; Caniato R. Monitoring the production yields of vincristine and vinblastine in Catharanthus roseus from somatic embryogenesis. Semiquantitative determination by flow-injection electrospray ionization mass spectrometry. Rapid Comm. Mass Spect. 15: 364–369; 2001.CrossRefGoogle Scholar
  7. Junaid A.; Bhatt M. A.; Mujib A.; Sharma M. P. Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell Tissue Organ Cult. 84: 325–332; 2006.CrossRefGoogle Scholar
  8. Junaid A.; Mujib A.; Fatima S.; Sharma M. P. Culture condition effect somatic embryogenesis in Catharanthus roseus L (G.) Don. Plant Biotechnol. Rep. 2: 179–190; 2008.CrossRefGoogle Scholar
  9. Kim S. W.; In D. S.; Choi P. S.; Liu J. R. Plant regeneration from immature zygotic embryo-derived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tissue Organ Cult. 76: 131–135; 2004.CrossRefGoogle Scholar
  10. Kim S. W.; Jung K. H.; Song N. H.; Kwak S. S.; Liu J. R. High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Rep. 13: 319–322; 1994.Google Scholar
  11. Krueger R. J.; Carew D. P.; Lui J. H. C.; Staba E. J. Initiation, maintenance and alkaloid content of Catharanthus roseus leaf organ cultures. Planta Med. 45: 56–57; 1982.CrossRefPubMedGoogle Scholar
  12. Kuboyama T.; Yokoshima S.; Tokuyama H.; Fukuyama T. Stereocontrolled total synthesis of (+) vincristine. PNAS 101: 11966–11970; 2004.CrossRefPubMedGoogle Scholar
  13. Meijer A. H.; Verpoorte R.; Hoge J. H. C. Regulation of enzymes and genes involved in terpenoids indole alkaloid biosynthesis in Catharanthus roseus. J. Plant Res. 3: 145–164; 1993.Google Scholar
  14. Miura Y.; Hirata K.; Kurano K. N.; Miyamoto K.; Chiida K. Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med. 54: 18–20; 1988.CrossRefPubMedGoogle Scholar
  15. Moreno P. R. H.; Van der Heijden R.; Verpoorte R. Cell and tissue cultures of Catharanthus roseus; a literature survey II. Updating from 1988–1993. Plant Cell Tissue Organ Cult. 42: 1–25; 1995.CrossRefGoogle Scholar
  16. Mujib, A.; Ilah, A.; Gondotra, N.; Abdin, M. Z. In vitro approaches to improve alkaloid yield in Catharanthus roseus. In: “Biotechnology and Genetic Engineering”Vol IV of “Recent Progress in Medicinal Plants” Govil JN, Kumar PA, Singh VK (eds). SciTech Pub, Houston, USA, pp. 415–440; 2003.Google Scholar
  17. Mujib A.; Samaj J. Somatic embryogenesis. Springer Verlag, Berlin Heidelberg, New York, p 357; 2006.CrossRefGoogle Scholar
  18. Mukherjee A. K.; Basu S.; Sarkar N.; Ghosh A. C. Advances in cancer therapy with plant based natural products. Curr. Med. Chem. 8: 1467–1486; 2001.PubMedGoogle Scholar
  19. Murashige T.; Skoog F. A revised medium of rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.CrossRefGoogle Scholar
  20. Neumann D.; Kraus G.; Heike M.; Groger D. Indole alkaloid formation and storage in cell suspension cultures of C. roseus. Planta Med. 48: 20–23; 1983.CrossRefPubMedGoogle Scholar
  21. Pasquali G.; Goddijin O. J. M.; De Wall A.; Verpoorte R.; Schilperoort R. A.; Hoge J. H. C. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol. Biol. 18: 1121–1131; 1992.CrossRefPubMedGoogle Scholar
  22. Rocha L. K.; Oliveira A. J. B.; Mangolin C. A.; Machado M. F. P. S. Effect of different culture medium components on production of alkaloids in callus tissues of Cereus peruvianus (Cactaceae). Acta Sci. Biol. Sci. 27: 37–41; 2005.Google Scholar
  23. Rommens C. M.; Humara J. M.; Ye Yan H.; Richael C.; Zhang L.; Perry R.; Swords K. Crop improvement through modification of the plant's own genome. Plant Physiol. 135: 421–431; 2004.CrossRefPubMedGoogle Scholar
  24. Thorpe T. A. In vitro embryogenesis in plants. Kluwer, Dordrecht Netherlands; 1995.Google Scholar
  25. Van der Heijden R.; Jacobs D. T.; Snoeijer W.; Hallard D.; Verpoorte R. The catharanthus alkaloids: pharmacognsosy and biochemistry. Curr. Med. Chem. 11: 607–628; 2004.CrossRefGoogle Scholar
  26. Van der Heijden R.; Verpoorte R.; Ten Hoopen H. J. G. Cell and tissue cultures of Catharanthus roseus (L). G. Don: a literature survey. Plant Cell Tissue Organ Cult. 18: 231–280; 1989.CrossRefGoogle Scholar
  27. Verpoorte R.; Van der Heijden R.; Schripsema J.; Hoge J. H. C.; Ten Hoopen H. J. G. Plant biotechnology for the production of alkaloids: present status and prospects. J. Nat. Prod. 56: 186–207; 1993.CrossRefGoogle Scholar
  28. Walter C. Genetic engineering in conifer forestry: technical and social consideration. In vitro cell. Dev. Biol. Plant 40: 434–441; 2004.Google Scholar

Copyright information

© The Society for In Vitro Biology 2010

Authors and Affiliations

  • Junaid Aslam
    • 1
  • Abdul Mujib
    • 1
    Email author
  • Zohra Fatima
    • 1
  • Maheshwar Prasad Sharma
    • 1
  1. 1.Department of Botany, Cellular Differentiation and Molecular Genetics SectionHamdard UniversityNew DelhiIndia

Personalised recommendations