Skip to main content
Log in

Anthocyanin production in a callus line of Panax sikkimensis Ban

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A root-derived callus line of Panax sikkimensis that stably accumulates anthocyanins was established by small cell aggregate selection method. The selected line showed a growth index of 221.36 and an anthocyanin content of 2.76 mg/g fw (7.076% dw) in 50–60 d of growth on a modified MS medium containing 4.5 µM 2,4-dichlorophenoxy acetic acid and 1.2 µM kinetin under 16-h light and 8-h dark photoperiodic conditions. Incubation under continuous light increased the growth index to 435.57 but led to a marginal dilution of anthocyanin content to 2.192 mg/g fw (6.928% dw). The purple-red pigment had absorption maximum at 528 nm. The selected callus line has shown sustained growth and productivity for more than 6 yr now. Interestingly, pigment accumulation in the selected line did not hinder the ginsenoside production in the callus tissue (0.9–1.2% fw).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2

Similar content being viewed by others

References

  • Bennet S. S. R.; Sharma B. K. Indian ginsengs. Indian For 109: 840–847; 1983.

    Google Scholar 

  • Cállebáut A.; Hendrickx G.; Voets A. M.; Motte J. C. Anthocyanin in cell cultures of Ajuga reptans. Phytochemistry 29: 2153–2158; 1990.

    Article  Google Scholar 

  • Choi K. T. Panax ginseng C.A.Meyer. Micropropagation and the in vitro production of saponins. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, medicinal and aromatic plants I. Springer, Berlin, pp 484–500; 1988.

    Google Scholar 

  • Cormier F.; Crevier H. A.; Do C. B. Effects of sucrose concentration on the accumulation of anthocyanins in grape (Vitis vinifera) cell suspension. Can J Bot 68: 1822–1825; 1990.

    CAS  Google Scholar 

  • Cormier F.; Do C. B. Vitis vinifera L. In vitro production of anthocyanins. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, medicinal and aromatic plants V, vol. 24. Springer, Berlin, pp 373–386; 1993.

    Google Scholar 

  • Grusak M. A.; Rogers R. B.; Yousef G. G.; Erdman J. W.; Jr L. M. A. An enclosed chamber labeling system for the safe 14C-enrichment of phytochemicals in plant cell suspension cultures. In Vitro Cell Dev Biol Plant 40: 80–85; 2004.

    Article  CAS  Google Scholar 

  • Haughton P. Roots of remedies: plants, people and pharmaceuticals. Chem Ind 1: 15–19; 1999.

    Google Scholar 

  • Hirner A.; Veit S.; Seitz H. Regulation of anthocyanin biosynthesis in UV-A irradiated cell cultures of carrot and in organs of intact carrot plants. Plant Sci 161: 315–322; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kandil F. E.; Song L.; Pezzuto J. M.; Marley K.; Seigler D. S.; Smith M. A. L. Isolation of oligomeric proanthocyanidins from flavonoid-producing cell cultures. In Vitro Cell Dev Biol Plant 36: 492–500; 2000.

    Article  CAS  Google Scholar 

  • Kang S.; Seeram N.; Nair M.; Bourquin L. Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett 194: 13–19; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y.; Akita M.; Sakamoto K.; Liu H.; Shigeoka T.; Koyano T.; Kamamura M.; Furuya T. Large scale production of anthocyanin by Aralia cordata cell suspension cultures. Appl Microbiol Biotechnol 40: 215–218; 1993.

    Article  CAS  Google Scholar 

  • Konczak-Islam I.; Yoshinaga M.; Hou M.; Terahara N.; Yamakawa O. Potential chemopreventive properties of anthocyanin rich aqueous extracts from in vitro produced tissue of sweet potato (Ipomoea batatus L.). J Agr Food Chem 51: 5916–5922; 2003.

    Article  CAS  Google Scholar 

  • Konczak-Islam I.; Yoshinaga M.; Nakatani N.; Terahara N.; Yamakawa O. Establishment of an anthocyanin-producing cell line from sweet potato storage root. Plant Cell Rep 9: 472–477; 2000.

    Article  Google Scholar 

  • Lila M. A. Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 5: 306–313; 2004.

    Article  Google Scholar 

  • Liu R. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Amer J Clin Nutr 78: 517S–520S; 2003.

    CAS  PubMed  Google Scholar 

  • Mathur A.; Ahuja P. S.; Mathur A. K. Micropropagation of P. quinquefolium, Rauvolfia serpentina and some other medicinal and aromatic plants of India. In: Quynh N. T.; Uyen N. V. (eds) Proc. SE Asian Regional Workshop on Propagation Techniques for Commercial Crops of Tropics. Vietnam, pp 155–173; 1993.

  • Mathur A.; Mathur A. K.; Pal M.; Uniyal G. C. Comparison of qualitative and quantitative in vitro ginsenoside production in callus cultures of three species of Panax. Planta Med 5: 484–486; 1999.

    Article  Google Scholar 

  • Mathur A.; Mathur A. K.; Sangwan R. S.; Gangwar A.; Uniyal G. C. Differential responses, ginsenoside metabolism and RAPD pattern of three Panax species. Genet Res Crop Evolution 50: 245–252; 2003.

    Article  CAS  Google Scholar 

  • Mathur A.; Shukla Y. N.; Pal M.; Ahuja P. S.; Uniyal G. C. Saponin production in callus and cell suspension cultures of Panax quinquefolium. Phytochemistry 35: 1221–1225; 1994.

    Article  CAS  Google Scholar 

  • Mehta K.; Haridasan K. The ginsengs in Arunachal Pradesh. Arunachal For News 10: 56–58; 1992.

    Google Scholar 

  • Meyer H. J.; van Staden J. The in vitro production of an anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tiss Org Cult 40: 55–58; 1995.

    Article  CAS  Google Scholar 

  • Mori T.; Sakurai M.; Sakuta M. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Sci 160: 335–360; 2001.

    Article  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Ngan F.; Shaw P.; But P.; Wang J. Molecular authentication of Panax species. Phytochemistry 50: 787–791; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Nocerino E.; Amato M.; Izzo A. A. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 71: S1–S5; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Payne G.; Bringi V.; Prince C.; Shuler M. Plant cell and tissue cultures in liquid systems. Hanser, New York; 1992.

    Google Scholar 

  • Sakamoto K.; Iida K.; Koyano T.; Asada Y.; Furuya T. Method for selecting anthocyanin producing cells by a cell sorter. Planta Med 60: 253–259; 1994.

    Article  CAS  PubMed  Google Scholar 

  • Seitz H. U.; Hinderer W. Anthocyanins. In: Constabel F.; Vasil I. K. (eds) Cell culture and somatic cell genetics of plants, phytochemicals in plant cell cultures, vol. 5. Academic, New York, pp 49–76; 1988.

    Google Scholar 

  • Shukla Y. N.; Thakur R. S. Saponins of Panax pseudo-ginseng subsp. himalaicus var. angustifolius rhizomes. Planta Med 54: 367–368; 1988.

    Article  CAS  PubMed  Google Scholar 

  • Shuler M.; Hirasuna T.; Prince C.; Bringi V. Bioreactor considerations for producing flavours and pigments from plant tissue culture. In: Schwarzberg H.; Rao M. (eds) Bioprocess and food process engineering. Marcel Decker, New York, pp 45–66; 1990.

    Google Scholar 

  • Suzuki M. Enhancement of anthocyanin accumulation by high osmotic stress and low pH in grape cells (Vitis hybrids). J Plant Physiol 147: 152–155; 1995.

    CAS  Google Scholar 

  • Verpoorte R.; Alfermann A. W. Metabolic engineering of plant secondary metabolism. Kluwer Academic, Dordrecht; 2000.

    Google Scholar 

  • Vitrac X.; Larronde F.; Krisa F.; Decendit A.; Deffieux G.; Merillon J. M. Sugar sensing and Ca+2 -calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53: 659–665; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa T.; Kato S.; Ishida K.; Kodama T.; Minoda T. Production of anthocyanin by Vitis cells in suspension culture. Agr Biol Chem 47: 2185–2191; 1983.

    CAS  Google Scholar 

  • Yousef G.; Seiger D. S.; Grusak M. A.; Rogers R. B.; Knight C. T. G.; Kraft T. F. B.; Erdman Jr. J. W.; Lila M. A. Biosynthesis and characterisation of 14C enriched flavonoid fractions from plant cell suspension cultures. J Agr Food Chem 52: 1138–1145; 2004.

    Article  CAS  Google Scholar 

  • Zhong J.; Yoshida M.; Fujiyama D.; Seki T.; Yoshida T. Enhancement of anthocyanin production by Perilla frutescens cells in a stirred bioreactor with internal light irradiation. J Ferment Bioeng 75: 299–303; 1993.

    Article  CAS  Google Scholar 

  • Zubko M.; Schmeer K.; Glabgen W.; Bayer E.; Seitz H. Selection of anthocyanin accumulating potato (Solanum tuberosum L.) cell lines from calli derived from seedlings germinated from gamma-irradiated seeds. Plant Cell Rep 12: 555–558; 1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Council of Scientific and Industrial Research (CSIR), New Delhi and Director CIMAP for the financial support and facilities for this work. AM also thanks the International Foundation for Science (IFS), Sweden for the partial funding to this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mathur.

Additional information

Editor: D. T. Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, A., Mathur, A.K., Gangwar, A. et al. Anthocyanin production in a callus line of Panax sikkimensis Ban. In Vitro Cell.Dev.Biol.-Plant 46, 13–21 (2010). https://doi.org/10.1007/s11627-009-9253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9253-3

Keywords

Navigation