Skip to main content
Log in

Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Tecoma stans is a tropical plant from the Americas. Antioxidant activity and both phenolic compound and flavonoid total content were determined for callus tissue of T. stans cultured in either a set photoperiod or in darkness. Callus lines from three explant types (hypocotyls, stem, and leaf) were established on B5 culture medium supplemented with 0.5 μM 2,4-D and 5.0 μM kinetin. While leaf-derived callus grew slower under a 16-h photoperiod (specific growth rate, μ = 0.179 d−1, tD = 3.9 d) than in darkness (μ = 0.236 d−1, tD = 2.9 d), it accumulated the highest amount (p < 0.05) of both phenolics (86.6 ± 0.01 mg gallic acid equivalents/g) and flavonoids (339.6 ± 0.06 mg catechin equivalents/g). Similarly, antioxidant activity was significantly higher (p < 0.05) when callus was cultured in period light than when grown in extended darkness. Antioxidant activity measured with a 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS)-based assay was 350.5 ± 15.8 mmol Trolox/g extract for callus cultured under a defined photoperiod compared to 129.1 ± 7.5 mmol Trolox/g extract from callus cultured in darkness. Content of phenolic compounds and flavonoids was in agreement with a better antioxidant power (EC50 = 450 μg extract/mg 1,1-diphenyl-2-picrylhydrazyl) and antiradical efficiency. Results of the present study show that calli of T. stans are a source of compounds with antioxidant activity that is favored by culture under a set photoperiod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahmad F.; Kahn R. A.; Rasheed S. Preliminary screening of methanolic extracts of Celastrus paniculatus and Tecomella undulata for analgesic and anti-inflammatory activities. J. Ethnopharmacol. 42: 193–198; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Anandjiwala S.; Srinivasa H.; Kalola J.; Rajani M. Free-radical scavenging activity of Bergia suffruticosa (Delile) Fenzl. J. Nat. Med. 61: 59–62; 2007.

    Article  CAS  Google Scholar 

  • Andrade-Cetto A.; Heinrich M. Mexican plants with hypoglycemic effect used in the treatment of diabetes. J. Ethnopharmacol. 99: 325–348; 2005.

    Article  PubMed  Google Scholar 

  • Arezki O.; Boxus P.; Kevers C.; Gaspar T. Changes in peroxidase activity, and level of phenolic compounds during light-induced plantlet regeneration from Eucalyptus camaldulensis Dehn. nodes in vitro. Plant Growth Regul. 33: 215–219; 2001.

    Article  CAS  Google Scholar 

  • Bahorun T.; Aumjaud E.; Ramphul H.; Rycha M.; Luximon-Ramma A.; Trotin F.; Aruoma O. I. Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Nahrung/Food 47: 191–198; 2003.

    Article  CAS  Google Scholar 

  • Brand-Williams W.; Cuvelier M.; Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28: 25–33; 1995.

    CAS  Google Scholar 

  • Cai Y.; Luo Q.; Sun M.; Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Costantino L.; Raimondi L.; Parisino R.; Brunetti T.; Pessotto P.; Giannessi F.; Lins A. P.; Barlocco D.; Antolini L.; El-Abady S. A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Il Farmaco 58: 781–785; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Grzegorczyk I.; Matkowski A.; Wysokinska H. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem. 104: 536–541; 2007.

    Article  CAS  Google Scholar 

  • Harborne J. B. Comparative Biochemistry of the flavonoids-VI. Flavonoids patterns in the Bignoniaceae and the Gesneriaceae. Phytochemistry 6: 1643–1651; 1967.

    Article  CAS  Google Scholar 

  • Hashem F. A. Investigation of free radical scavenging activity by ESR for coumarins isolated from Tecoma radicans. J. Med. Sci. 6: 1027–1032; 2007.

    Google Scholar 

  • Jiménez-Ferrer G.; Pérez-López H.; Soto-Pinto L.; Nahed-Toral J.; Hernández-López L.; Carmona J. Livestock, nutritive value and local knowledge of fodder tress in fragment landscapes in Chiapas, México. Interciencia 32: 274–280; 2007.

    Google Scholar 

  • Katalinic V.; Milos M.; Kulisic T.; Jakic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94: 550–557; 2006.

    Article  CAS  Google Scholar 

  • Katoh K.; Ohta Y.; Hirose Y.; Iwamura T. Photoautotrophic growth of Mercanthia polymorpha L. cells in suspension culture. Planta 144: 509–510; 1979.

    Article  CAS  Google Scholar 

  • Larson R. The antioxidants of higher plants. Phytochemistry 27: 969–978; 1988.

    Article  CAS  Google Scholar 

  • Li H. B.; Wong C. C.; Cheng K. W.; Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Science and Technology 41: 385–390; 2008.

    Article  CAS  Google Scholar 

  • Machida K.; Hishinuma E.; Kikuchi M. Studies on the constituents of Catalpa species. IX. Iridoids from the fallen leaves of Catalpa ovata G. DON. Chem. Pharmacol. Bull. 52: 618–621; 2004.

    Article  CAS  Google Scholar 

  • Martin F. A.; Hay A. E.; Corno L.; Gupta M. P.; Hostettmann K. Iridoid glycosides from the stems of Pithecoctenium crucigerum (Bignoniaceae). Phytochemistry 68: 1307–1311; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Martínez M. Catálogo de nombres vulgares y científicos de Plantas Mexicanas. Fondo de Cultura Económica, México; 1994.

    Google Scholar 

  • Marzouk M.; Gamal-Eldeen A.; Mohamed M.; El-Sayed M. Anti-proliferative and antioxidant constituents from Tecoma stans. Z. Nat. Forsch., C J. Biosci. 61c: 783–791; 2006.

    Google Scholar 

  • Matkowski A. Plant in vitro culture for the production of antioxidants—a review. Biotechnol. Adv. 26: 548–560; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Misra N.; Misra P.; Datta S. K.; Mehrotra S. In vitro biosynthesis of antioxidants from Hemidesmus indicus R. Br. cultures. In Vitro Cell Dev. Biol. 41: 285–290; 2005.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nsimba R. Y.; Kikuzaki H.; Konishi Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 106: 760–766; 2008.

    Article  CAS  Google Scholar 

  • Parr A. J.; Bolwell G. P. Phenols in the plant and in man. The potential of possible nutritional enhancement of the diet by modifying the phenol content or profile. J. Sci. Food Agric. 80: 985–1012; 2000.

    Article  CAS  Google Scholar 

  • Pletsch M.; Piacente S.; Pizza C.; Charlwood B. V. The accumulation of phenylpropanoid glycosides in tissue cultures of Tecoma sambucifolium. Phytochemistry 34: 161–165; 1993.

    Article  CAS  Google Scholar 

  • Re R.; Pelligrini N.; Proteggente A.; Pannala A.; Yang M.; Rice-Evans C. Antioxidant acitivity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231–1237; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C. A.; Miller N. J. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. Trans. 24: 790–795; 1996.

    PubMed  CAS  Google Scholar 

  • Robaszkiewicz A.; Balcerczyk A.; Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol. Int. 31: 1245–1250; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreno C.; Larrauri J. A.; Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76: 270–276; 1998.

    Article  Google Scholar 

  • Shohael A. M.; Chakrabarty D.; Ali M. B.; Yu K. W.; Hahn E. J.; Lee H. L.; Paek K. Y. Enhancement of eleutherosides production in embryogenic cultures of Eleutherucoccus sessiflorus in response to sucrose-induced osmotic stress. Process Biochem. 41: 512–518; 2006.

    Article  CAS  Google Scholar 

  • Silva E. M.; Souza J. N. S.; Rogez H.; Rees H.; Larondelle Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 101: 1012–1018; 2007.

    Article  CAS  Google Scholar 

  • Tabart J.; Kervers C.; Pincemail J.; Defraigne J. O.; Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 113(4): 1226–1233; 2009.

    Article  CAS  Google Scholar 

  • Tadhani M. B.; Patel V. H.; Subhash R. In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J. Food Compos Anal. 20: 323–329; 2007.

    Article  CAS  Google Scholar 

  • Termentzi A.; Kefalas P.; Kokkalou E. Antioxidant activities of various extracts and fractions of Sorbus domestica fruits at different maturity stages. Food Chem. 98: 599–608; 2006.

    Article  CAS  Google Scholar 

  • Tsimogiannis D. I.; Oreopoulou V. The contribution of flavonoids C-ring on the DPPH free radical scavenging efficiency. A kinetic approach for the 3′4′-hydroxy substituted members. Innov Food Sci Emerg. Technol 7: 140–146; 2006.

    Article  CAS  Google Scholar 

  • Verpoorte R.; Contin A.; Memelink J. Biotechnology for the production of plant secondary metabolites. Phytochem. Rev. 1: 13–25; 2002.

    Article  CAS  Google Scholar 

  • Wagner H.; Bladt S.; Zgainski E. M. Plant drug analysis. A thin layer chromatography atlas. Springer-Verlag, Berlin; 1984. p 320.

    Google Scholar 

  • Winkel-Shirley B. Flavonoid biosynthesis. A color model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485–493; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wu C.-H.; Murthy H.; Hahn E.-J.; Paek K.-Y. Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension cultures of Equinacea purpurea by manipulation of incubation temperature and photoperiod. Biochem. Eng. J. 36: 301–303; 2007.

    Article  CAS  Google Scholar 

  • Yesil-Celiktas O.; Nartop P.; Gurel A.; Bedir E.; Vardar-Sukan F. Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. J. Plant Physiol. 164: 1536–1542; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz Y.; Toledo R. Health aspects of functional grape seed constituents. Trends Food Sci. Technol. 15: 422–433; 2004.

    Article  CAS  Google Scholar 

  • Zhong J.; Seki T.; Kinoshita S.; Yoshida T. Effect of light irradiation on anthocyanin production by suspended culture of Perilla frutescens. Biotechnol. Bioeng. 38: 653–658; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Secretaría de Investigación y Posgrado del IPN (SIP-IPN, Grants 20070118 and 20080101) and by Fondo Mixto de Fomento a la Investigación Científica y Tecnológica CONACYT-Gobierno del Estado de Morelos (MOR-2007-C01-79409). A. R. López-Laredo, G. Sepúlveda-Jiménez, and G. Trejo-Tapia are grateful to SIBE and EDI (IPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Trejo-Tapia.

Additional information

Editor: K. Springob

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Laredo, A.R., Ramírez-Flores, F.D., Sepúlveda-Jiménez, G. et al. Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness. In Vitro Cell.Dev.Biol.-Plant 45, 550–558 (2009). https://doi.org/10.1007/s11627-009-9250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9250-6

Keywords

Navigation