Abstract
A rapid and efficient regeneration procedure via direct organogenesis from mature embryo axes of ten landraces of bambara groundnut has been developed. Embryo axis cultured on hormone-free Murashige and Skoog (MS; Murashige and Skoog, Physiol Plant 15:473–497, 1962) medium produced only single plants, while multiple shoots were produced at the nodal and apical regions of explants within 3–4 wk of culture on MS medium plus B5vitamins (Gamborg et al., Exp Cell Res 50:151–158, 1968) and supplemented with cytokinins such as 6-benzylaminopurine (BAP), kinetin, zeatin, and thidiazuron alone or in combination with α-naphthaleneacetic acid. BAP proved to be the most effective cytokinin tested in this study. The shoot-forming ability of embryo axis was influenced by BAP concentration, and optimal BAP concentration was determined. Vertical orientation of explants on the medium was significantly better than the horizontal position for shoot induction. Genotypes also showed significant differences in their regeneration in terms of percent response (28.77 ± 3.83–77.70 ± 10.64%) as well as an average number of shoots per explant (5.44–12.63). Regenerated shoots elongated in the same medium and rooted upon transfer to full-strength MS medium devoid of growth regulators. Regenerated plants were successfully transferred to soil and all surviving plants were morphologically normal.
Similar content being viewed by others
References
Ajayi F. A.; Lale N. E. Susceptibility of unprotected seeds and seeds of local bambara groundnut cultivars protected with insecticidal essential oils to infestation by Callosobruchus masculatus (F.) (Coleoptera: Bruchidae). J Stored Product Res 37: 47–62; 2000.
Amutha S.; Ganapathi A.; Muruganantham M. In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell Tissue and Organ Culture 72: 203–207; 2003.
Brar M. S.; AL-Khayri J. M.; Morelock T. E.; Anderson D. E. Genotypic response of Cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro. Cell Dev Biol-Plant 35: 8–12; 1999.
Brough S. H.; Azam-Ali S. N.; Taylor A. J. The potential of bambara groundnut (Vigna subterranea) in vegetable milk production and basic protein functionality systems. Food Chem. 47: 277–283; 1993.
Brunning J. L.; Kintz J. L. Computational handbook of statistics. 2nd ed. Scott Foresman, Glenview; 1977.
Cheliak W. M.; Rogers D. L. Integrating biotechnology in to tree improvement programs. Can. J. For. Res. 20: 452–463; 1990.
Collinson S. T.; Sibuga K. P.; Tarimo A. J. P.; Azam-Ali S. N. Influence of sowing date on the growth and yield of Bambara groundnut (Vigna subterranea L.) landraces in Tanzania. Expt Agric 36: 1–13; 2000.
Cruz de Carvalho M.; Van Le B.; Zuily-Fodil Y.; Pharm-Thi A. T.; Thanh-Van K. T. Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell layer culture and silver nitrate. Plant Sci. 159: 223–232; 2000.
Das D. K.; Prakash S. N.; Bhalla-Sarin N. An efficient regeneration system of black gram (Vigna mungo L. Hepper) through organogenesis. Plant Sci. 134: 199–206; 1998.
Davies D.; Hamilton R. J.; Mullineaux P. M. Transformation of peas. Plant Cell Rep. 12: 180–183; 1993.
Delgado-Sanchez P.; Saucedo-Ruiz M.; Guzman-Maldonado S. H.; Villordo-Pineda E.; Gonzales-Chavira M.; Fraire-Velazquez S.; Acosta-Gallegos J. A.; Mora-Aviles A. An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170: 822–827; (2006).
Doku E. V.; Karikari S. K. Bambara groundnut. Econ. Bot. 25: 255–263; 1971.
Eapen S.; Gill R. Regeneration of plants from cultured root explants of mothbean (Vigna aconitifolia L. Jacq. Marechal). Theor App Genet 72: 384–387; 1986.
Franklin G.; Jeyachandran R.; Ignacimuthu S. Factors affecting regeneration of pigeonpea (Cajanus cajan L. Millsp) from mature embryonal axes. Plant Growth Regul. 30: 31–36; 2000.
Gamborg M.; Miller R. A.; Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.
Goh H. K. L.; Rao A. N.; Loh C. S. Direct shoot bud formation from leaf explant of seedlings and mature mangosteen (Garcinia mangostana L.) trees. Plant Sci. 68: 113–121; 1990.
Gulati A.; Jaiwal P. K. Plant regeneration from cotyledonary nodes of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell Rep. 13: 523–527; 1994.
Gwekwere Y (1995) Pests and disease of bambara groundnut in Zimbabwe. In: Heller J, Begeman F, Mushonga J (eds) Bambara groundnut Vigna subterranea (L.) Verdc Proc Workshop Conserv Improve Bambara Groundnut [Vigna subterranea (L.) Verdc.] Harare, Zimbabwe: 4–10
Hinchee M. A. W.; Connor-Ward D. V.; Newell C. A.; Mc Donnell R. E.; Sato S. J. Gasser C. S.; Fischhoff D. A.; Re D. B.; Fraley R. T.; Horsch R. B. Production of transgenic soybean plant using Agrobacterium-mediated DNA transfer. Biotechnology. 6: 915–922; 1988.
Kiwallo L (1991) Inventaire des maladies cryptogamiques du voandzou [Vigna subterranea (L.) Verdc.] au Burkina Faso. Mémoire de fin d’études en agronomie, Institut du Développement Rural, Université de Ouagadougou, Burkina Faso: 54 pp
Koné M.; Ochatt SJ.; Patat-Ochatt E.; Pontecaille C.; Sangwan RS.; Kouadio YJ (2006) Régénération in vitro de plantules à partir de l’explant hypocotyle chez Vigna subterranea (L.) Verdc. X e Journées Scientifiques du Réseau “Biotechnologies Végétales: amélioration des plantes et sécurité alimentaire” de l’AUF, Constantine–Algeria: 8–11
Koné M.; Patat-Ochatt E. M.; Conreux C.; Sangwan R. S.; Ochatt S. J. In vitro morphogenesis from cotyledon and epicotyl explants and flow cytometry distinction between landraces of Bambara groundnut [Vigna subterranea (L.) Verdc.], an under-utilised grain legume. Plant Cell, Tissue Organ Cult 88: 61–75; 2007. doi:10.1007/s11240-006-9179-y.
Lacroix B.; Assoumou Y.; Sangwan R. S. Efficient in vitro direct shoot organogenesis of fertile plants from embryo explants of Bambara groundnut [Vigna subterranea (L.) Verdc.]. Plant Cell Rep. 21: 1153–1158; 2003.
Le B. V.; Cruz de Carvalho M. H.; Zuily-Fodil Y.; Thi A. T. P.; Van K. T. T. Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp.] from cotyledonary node thin cell layer explants. J Plant Physiol. 159: 1255–1258; 2002.
Linnemann A. R. (1994) Photothermal regulation of phenological development and growth in bambara groundnut [Vigna subterranea (L.) Verdc.]. PhD Thesis, Wageningen Agricultural University, The Netherlands: 123 pp
Linnemann A. R.; Azam-Ali S. N. Bambara groundnut [Vigna subterranea (L.) Verdc.]. In: Williams J. T. (ed) Underutilized crops series 2. Vegetables and pulses. Chapman & Hall, London, pp 13–58; 1993.
Marks T. R.; Simpson S. E. Factors affecting shoot development in apically dominant Acer cultivars in vitro. J Hort Sci 69: 543–551; 1994.
Massawe FJ.; Schenkel W.; Basu S.; Temba EM (2003) Artificial Hybridisation in Bambara Groundnut. In: Proceedings of the International Bambara Groundnut Symposium, Botswana College of Agriculture, Botswana, 8–12 August: 193–210
Mundhara R.; Rashid A. Recalcitrant grain legume Vigna radiata, mung bean, made to regenerate on change of hormonal and cultural conditions. Plant Cell Tissue and Organ Culture 85: 265–270; 2006.
Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol. Plant. 15: 473–497; 1962.
Nagori R.; Purohit S. D. In vitro plantlet regeneration in Annona squamosa through direct shoots bud differentiation on hypocotyl segments. Sci. Hortic. 99: 89–98; 2004.
Nauerby B.; Madsen M.; Christiansen J.; Wyndaele R. A rapid and efficient regeneration system for pea (Pisum sativum), suitable for transformation. Plant Cell Rep. 9: 676–679; 1991.
Ochatt S. J.; Sangwan R. S.; Marget P.; Assoumou Ndong Y.; Rancillac M.; Perney P. New approaches toward the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121: 436–440; 2002. ISSN 0179-9541/2002/2105-0436.
Patel M. B.; Bhardwaj R.; Joshi A. Organogenesis in Vigna radiata (L.) Wilczek. Indian J. Exp. Biol. 29: 619–622; 1991.
Popiers D.; Flandre F.; Sangwan-Norreel B. B. Intensification de la régénération du pois (Pisum sativum L.), par le thidiazuron via la formation de structures caulinaires organogènes. Can. J. Bot. 75: 492–500; 1997.
Saini R.; Jaiwal P. K. Age, position in mother seedling, orientation, and polarity of the epicotyl segments of blackgram (Vigna mungo L. Hepper) determines its morphogenic response. Plant Sci. 163: 101–109; 2002.
Sharma K. K.; Anjaiah V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea) trough Agrobacterium tumefasciens-mediated genetic transformation. Plant Sci. 159: 7–19; 2000.
Sharma K. K.; Ortiz R. Program for the application of genetic transformation for crop improvement in the semi arid tropics. In Vitro Cell Dev Biol Plant 36: 83–92; 2000.
Swanevelder CJ (1998) Bambara-food for Africa: (Bambara groundnut: Vigna subterranea). National Department of Agriculture, Grain Crops Institute. Pretoria, South Africa
Veltcheva M.; Svetleva D.; Petkova S. In vitro regeneration of Phaseolus vulgaris L. Ann Rep Bean Improv Coop 45: 246–247; 2002.
Wambete J.; Mpotokwane S (2003) Investigating opportunities for bambara groundnut in the development of weaning foods. In: Proceedings of the International Bambara Groundnut Symposium, Botswana College of Agriculture, Botswana.
Zaerr J. B.; Mapes M. O. Action of growth regulators. In: Bonga J. M. Durzan D. J. (eds) Tissue culture in forestry. Martinus Nijhoff, The Hague, pp 231–255; 1982.
Zambre M.; Geerts P.; Maquet A.; Van Montagu M.; Dilen W.; Angenon G. Regeneration of fertile plants from callus in Phaseolus polyanthus Greenman (Year Bean). Ann Bot. 88: 371–377; 2001.
Acknowledgements
The author is grateful to the Unity of Formation and Research, Nature Science (Université d’Abobo-Adjamé) for the financial assistance.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: M. Cheng
Rights and permissions
About this article
Cite this article
Koné, M., Kouakou, T.H., Koné, D. et al. Factors affecting regeneration of bambara groundnut [Vigna subterranea (L.) Verdc.] from mature embryo axes. In Vitro Cell.Dev.Biol.-Plant 45, 769–775 (2009). https://doi.org/10.1007/s11627-009-9237-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11627-009-9237-3