Skip to main content
Log in

Alkamide production from hairy root cultures of Echinacea

  • Metabolic Engineering/Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Hairy root cultures of Echinacea, one of the most important medicinal plants in the US, represent a valuable alternative to field cultivation for the production of bioactive secondary metabolites. In this study, the three most economically important species of Echinacea (Echinacea purpurea, Echinacea pallida, and Echinacea angustifolia) were readily transformed with two strains of Agrobacterium that produce the hairy root phenotype. Transformed roots of all three species exhibited consistent accelerated growth and increased levels of alkamide production. Optimization of the culture of Echinacea hairy roots was implemented to enhance both growth and alkamide production concomitantly. The use of half-strength Gamborg’s B5 medium supplemented with 3.0% sucrose was twice as effective in maintaining hairy root production than any other media tested. The addition of indolebutyric acid increased the growth rate of roots by as much as 14-fold. Alkamide production increased severalfold in response to the addition of the elicitor, jasmonic acid, but did not respond to the addition of indolebutyric acid. Induced accumulation of the important bioactive compounds, alkamides 2 and 8, was observed both in transformed roots and in response to jasmonic acid treatments. The results of this study demonstrate the efficacy of hairy root cultures of Echinacea for the in vitro production of alkamides and establish guidelines for optimum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Aerts, R. J.; Schafer, A.; Hesse, M.; Baumann, T. W.; Slusarenko, A. Signaling molecules and the synthesis of alkaloids in Catharanthus roseus seedlings. Phytochemistry 42: 417–422; 1996. doi:10.1016/0031-9422(95)00919-1.

    Article  CAS  Google Scholar 

  • Azlan, G. J.; Marziah, M.; Radzali, M.; Johari, R. Establishment of Physalis minima hairy root cultures for the production of physalins. Plant Cell Tiss. Org. Cult. 69: 271–278; 2002. doi:10.1023/A:1015662118877.

    Article  Google Scholar 

  • Barnes, J.; Anderson, L. A.; Gibbons, S.; Phillipson, J. D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharmacy Pharmacology 57: 929–954; 2005. doi:10.1211/0022357056127.

    Article  CAS  Google Scholar 

  • Bauer, R.; Remiger, P. TLC and HPLC analysis of alkamides in Echinacea drugs1, 2. Planta Med. 55: 367–371; 1989. doi:10.1055/s-2006-962030.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, R.; Remiger, P.; Wagner, H. Alkamides from the roots of Echinacea purpurea. Phytochemistry 27: 2339–2342; 1988. doi:10.1016/0031-9422(88)80156-0.

    Article  CAS  Google Scholar 

  • Bauer, R.; Wagner, H. Echinacea species as potential immunostimulatory drugs, in: Economic and Medicinal Plant Research, Vol. 5. Academic, London Biotech. and Bioeng. 60:670–678; 1991.

  • Binns, E. E.; Inparajah, I.; Baum, B. R.; Arnason, J. T. Methyl jasmonate increases reported alkamides and ketoalkene/ynes in Echinacea pallida (Asteraceae). Phytochemistry 57: 417–420; 2001. doi:10.1016/S0031-9422(00)00444-1.

    Article  PubMed  CAS  Google Scholar 

  • Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of secondary metabolites: A historical perspective. Plant Sci. 161: 839–851; 2001. doi:10.1016/S0168-9452(01)00490-3.

    Article  CAS  Google Scholar 

  • Chaudhuri, K. N.; Ghosh, B.; Tepfer, D.; Jha, S. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: Growth and thylophorine productivity in different transformed root clones. Plant Cell Rep. 24: 25–35; 2005. doi:10.1007/s00299-004-0904-x.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.; Fu, T.; Tao, T.; Yang, J.; Chang, Y.; Wang, M.; Kim, L.; Qu, L.; Cassady, J.; Scalzo, R.; Wang, X. Macrophage activating effects of new alkamides from the roots of Echinacea species. J. Nat. Prod. 68: 773–776; 2005. doi:10.1021/np040245f.

    Article  PubMed  CAS  Google Scholar 

  • Choffe, K. L.; Murch, S. J.; Saxena, P. K. Regeneration of Echinacea purpurea: induction of root organogenesis from hypocotyl and cotyledon explants. Plant Cell Tiss. Org. Cult. 62: 227–234; 2000. doi:10.1023/A:1006444821769.

    Article  CAS  Google Scholar 

  • Greger, H. Alkamides: Structural relationships, distribution and biological activity. Planta Med. 50: 366–375; 1984. doi:10.1055/s-2007-969741.

    Article  PubMed  CAS  Google Scholar 

  • Guillon, S.; Tremouillaux-Guiller, J.; Pati, P. K.; Rideau, M.; Gantet, P. Hairy root research: Recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9: 1–6; 2006. doi:10.1016/j.pbi.2006.03.008.

    Article  CAS  Google Scholar 

  • Gundlach, H.; Muller, M. J.; Kutchan, T. M.; Zenk, M. H. Jasmonic acid as a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. U.S.A. 89: 2389–2393; 1992. doi:10.1073/pnas.89.6.2389.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. B.; Peebles, C. A.; Shanks, J. V.; San, K. Y.; Gibson, S. I. Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotech. Bioeng. 93: 386–390; 2005. doi:10.1002/bit.20699.

    Article  CAS  Google Scholar 

  • Islam, J.; Carter, R. Use of Echinacea in upper respiratory tract infection. Southern Med. J. 98: 311–318; 2005. doi:10.1097/01.SMJ.0000154783.93532.78.

    Article  Google Scholar 

  • Jacob, A.; Malpathak, N. Manipulation of MS and B5 components for enhancement of growth and solasodine production in hairy root cultures of Solanum khasianum Clarke. Plant Cell Tiss. Org. Cult. 80: 247–257; 2005. doi:10.1007/s11240-004-0740-2.

    Article  CAS  Google Scholar 

  • Koroch, A.; Juliani, H. R.; Kapteyn, J.; Simon, J. E. In vitro regeneration of Echinacea purpurea from leaf explants. Plant Cell Tiss. Org. Cult. 69: 79–83; 2002. doi:10.1023/A:1015042032091.

    Article  CAS  Google Scholar 

  • Kraus, G. A.; Bae, J. Synthesis of N-(2-methylpropyl)-2E-undecene-8,10-diynamide, a novel constituent of Echinacea angustifolia, Tetra. Lett. 44: 5505–5506; 2003. doi:10.1016/S0040-4039(03)01253-X.

    CAS  Google Scholar 

  • Kristen, L.; Choffe, S. J.; Murch, J.; Saxena, P. K. Regeneration of Echinacea purpurea: Induction of root organogenesis from hypocotyl and cotyledon explants. Plant Cell Tiss. Org. Cult. 62: 227–234; 2000.

    Article  Google Scholar 

  • Letchamo, W.; Polydeonny, L. V.; Gladisheva, N. O.; Arnason, T. J.; Livesey, J.; Awang, D. V. C. Factors affecting Echinacea quality, in: Trends in New Crops and New Uses, ASHS, Alexandria, VA, pp 514–521; 2002.

  • Li, T. Echinacea: Cultivation and medicinal value. HortTech. 8: 122–129; 1998.

    Google Scholar 

  • Liu, C.; Zhu, J.; Liu, Z.; Li, L.; Pan, R.; Jin, L. Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata (Willd.) Ohwi. Plant Growth Regul. 38: 37–43; 2002. doi:10.1023/A:1020904528045.

    Article  CAS  Google Scholar 

  • Liu, C. Z.; Abbasi, B. H.; Gao, M.; Murch, S. J.; Saxena, P. K. Caffeic Acid Derivatives Production by Hairy Root Cultures of Echinacea purpurea. J. Agric. Food Chem. 54: 8456–8460; 2006. doi:10.1021/jf061940r.

    Article  PubMed  CAS  Google Scholar 

  • Lourenço, P. M.; De Castro, S.; Martins, T. M.; Clemente, A.; Domingos, A. Growth and proteolytic activity of hairy roots from Centaurea calcitrapa: Effect of nitrogen and sucrose. Enzyme Microbial Tech. 31: 242–249; 2002. doi:10.1016/S0141-0229(02)00117-5.

    Article  Google Scholar 

  • Luczkiewicz, M.; Kokotkiewicz, A. Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Sci. 169: 862–871; 2005. doi:10.1016/j.plantsci.2005.06.005.

    Article  CAS  Google Scholar 

  • Nussbaumer, P.; Kapétanidis, I.; Christen, P. Hairy roots of Datura candida x D. aurea: Effect of culture medium composition on growth and alkaloid biosynthesis. Plant Cell Rep. 17: 405–409; 1998. doi:10.1007/s002990050415.

    Article  CAS  Google Scholar 

  • Raduner, S.; Majewska, A.; Chen, J. Z.; Xie, X. Q.; Hamon, J.; Faller, B.; Altmann, K. H.; Gertsch, J. Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J. Biol. Chem. 281: 14192–14206; 2006. doi:10.1074/jbc.M601074200.

    Article  PubMed  CAS  Google Scholar 

  • Rijhwani, S. K.; Shanks, J. V. Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotech. Progress 14: 442–449; 1998. doi:10.1021/bp980029v.

    Article  CAS  Google Scholar 

  • Savitha, B. C.; Thimmaraju, R.; Bhagyalakshmi, N.; Ravishankar, G. A. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem. 41: 50–60; 2006. doi:10.1016/j.procbio.2005.03.071.

    Article  CAS  Google Scholar 

  • Shaoxiong, Y.; Mahagamasekera, M. G. P.; Williams, G. R. C.; Kanokwaree, K.; Doran, P. M. Oxygen effect in hairy root cultureIn: Hairy roots: Culture and applications. Hardwood Academic, The Netherlands, pp 139–150; 1997.

    Google Scholar 

  • Sevón, N.; Oksman-Caldentey, K. M. Agrobacterium rhizogenes-mediated transformation: Root cultures as a source of alkaloids. Planta Med. 68: 859–868; 2002. doi:10.1055/s-2002-34924.

    Article  PubMed  Google Scholar 

  • Staniszewska, I.; Królicka, A.; Malinski, E.; Lojkowska, E.; Szafranek, J. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microbial Tech. 33: 565–568; 2003. doi:10.1016/S0141-0229(03)00180-7.

    Article  CAS  Google Scholar 

  • Stojakowska, A.; Malarz, J.; Kisiel, W. Salicylate and methyl jasmonate differentially influence diacetylene accumulation pattern in transformed roots of feverfew. Plant Sci. 163: 1147–1152; 2002. doi:10.1016/S0168-9452(02)00328-X.

    Article  CAS  Google Scholar 

  • Sung, L. S.; Huang, S. Y. Medium optimization of transformed root cultures of Stizolobium hassjoo producing l-DOPA with response surface methodology. Biotech. Progress 16: 1135–1140; 2000. doi:10.1021/bp000062t.

    Article  CAS  Google Scholar 

  • Trypsteen, M.; Van Lijsebettens, M.; Van Severn, R.; Van Montagu, M. Agrobacterium rhizogenes-mediated transformation of Echinacea purpurea. Plant Cell Rep. 10: 85–89; 1991. doi:10.1007/BF00236463.

    Article  CAS  Google Scholar 

  • Verpoorte, R.; Heijden, R.; Hoopen, H.; Memelink, J. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotech. Lett. 21: 467–479; 1999. doi:10.1023/A:1005502632053.

    Article  CAS  Google Scholar 

  • Wang, B.; Zhang, G.; Zhu, L.; Chen, L.; Zhanga, Y. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures. Coll. Surfaces B: Biointerfaces 53: 101–104; 2006. doi:10.1016/j.colsurfb.2006.08.003.

    Article  CAS  Google Scholar 

  • Washida, D.; Shimomura, K.; Takido, M.; Kitanaka, S. Auxin affected ginsenoside production and growth of hairy roots of Panax hybrid. Biol. Pharm. Bull. 27: 657–660; 2004. doi:10.1248/bpb.27.657.

    Article  PubMed  CAS  Google Scholar 

  • Weathers, P. J.; DeJesus-Gonzalez, L.; Kim, Y. J.; Souret, F. F.; Towler, M. J. Alteration of biomass and artemisinin production in Artemisia annua hairy roots by media sterilization method and sugars. Plant Cell Rep. 23: 414–418; 2004. doi:10.1007/s00299-004-0837-4.

    Article  PubMed  CAS  Google Scholar 

  • Widrlechner, M. P.; McKeown, K. A. Assembling and characterizing a comprehensive Echinacea germplasm collection, in: Trends in New Crops and New Uses. ASHS, Alexandria, VA, pp 506–508; 2002.

    Google Scholar 

  • Woelkart, K.; Bauer, R. The role of alkamides as an active principle of Echinacea. Planta Medica 73: 615–623; 2007. doi:0.1055/s-2007-981531.

    Article  PubMed  CAS  Google Scholar 

  • Woelkart, K.; Marth, E.; Suter, A.; Schoop, R.; Raggam, R. B.; Koidl, C.; Kleinhappl, B.; Bauer, R. Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system. Int. J. Clin. Pharmacol. Ther. 44: 401–408; 2006.

    PubMed  CAS  Google Scholar 

  • Wu, L.; Bae, J.; Kraus, G.; Wurtele, E. S. Diacetylenic isobutylamides of Echinacea: Synthesis and natural distribution. Phytochemistry 65: 2477–2484; 2004. doi:10.1016/j.phytochem.2004.06.027.

    Article  PubMed  CAS  Google Scholar 

  • Yu, K. W.; Gao, W.; Hahn, E. J.; Paek, K. Y. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng. Biochem. Eng. J. 11: 2111–2115; 2002. doi::10.1016/S1369-703X(02)00029-3.

    Article  Google Scholar 

  • Yu, S.; Kwok, K. H.; Doran, P. M. Effect of sucrose, exogenous product concentration, and other culture conditions on growth and steroidal alkaloid production by Solanum aviculare hairy roots. Enzyme Microbial Tech. 18: 238–243; 1996. doi:10.1016/0141-0229(95)00057-7.

    Article  CAS  Google Scholar 

  • Zabetakis, I.; Edwards, R.; O’Hagan, D. Elicitation of tropane alkaloids biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 50: 53–56; 1999. doi:10.1016/S0031-9422(98)00490-7.

    Article  CAS  Google Scholar 

  • Zid, S. A.; Orihara, Y. Polyacetylenes accumulation in Ambrosia maritima hairy root and cell cultures after elicitation with methyl jasmonate. Plant Cell Tiss. Org. Cult. 81: 65–75; 2005. doi:10.1007/s11240-004-2776-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was made possible by grant no. 9 P50 AT004155-06 from the National Center for Complementary and Alternative Medicine (NCCAM). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCCAM, or the National Institutes of Health. We thank Dr. Mark P. Widrlechner for providing the seeds for our experiments and Dr. Jackie Shanks for helpful suggestions on liquid cultures. Thanks to Dr. Eve Wurtele and Lankun Wu for their helpful technical assistance on the biochemical analyses. We also thank Dr. Susan Gibson, University of Minnesota, Dept. of Plant Biology, Dr. Seung-Beom Hong, Rice University, Dept. of Biochemistry and Cell Biology and Dr. Robert Thornburg, Iowa State University, Dept. of Biochemistry, Biophysics, and Molecular Biology, for providing the Agrobacterium strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hannapel.

Additional information

Editor: M. Horn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, F.R., Delate, K., Kraus, G.A. et al. Alkamide production from hairy root cultures of Echinacea . In Vitro Cell.Dev.Biol.-Plant 45, 599–609 (2009). https://doi.org/10.1007/s11627-008-9187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9187-1

Keywords

Navigation