Skip to main content

Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry

Abstract

Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  • Bennett M. D.; Leitch I. J. Nuclear DNA amounts in angiosperms: 583 new estimates. Ann. Bot. 80: 169–196; 1997. doi:10.1006/anbo.1997.0415.

    Article  CAS  Google Scholar 

  • Binzel M. L.; Sankhla N.; Joshi S.; Sankhla D. Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell. Rep. 15: 536–540; 1996. doi:10.1007/BF00232989.

    Article  CAS  Google Scholar 

  • Chase A. R. Corynespora leaf spot of Aeschynanthus pulcher and relate plants. Plant Dis. 66: 739–740; 1982.

    Google Scholar 

  • Chhetri D. R.; Basnet D.; Chiu P. F.; Kalikotay S.; Chhetri G.; Parajuli S. Current status of ethnomedicinal plants in the Darjeeling Himalaya. Curr. Sci. 89: 264–268; 2005.

    Google Scholar 

  • Compton M. E.; Gray D. J. Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell. Rep. 12: 61–65; 1993. doi:10.1007/BF00241935.

    Article  CAS  Google Scholar 

  • De Jong A. J.; Schmidt E. D. L.; De Vriess S. C. Early events in higher plant embryogenesis. Plant Mol. Biol. 22: 367–377; 1993. doi:10.1007/BF00014943.

    Article  PubMed  Google Scholar 

  • Denduangboripant J.; Cronk Q. C. High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc. Roy. Soc. Lond. B. 267: 1407–1415; 2000. doi:10.1098/rspb.2000.1157.

    Article  CAS  Google Scholar 

  • Dolezel J.; Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99–110; 2005. doi:10.1093/aob/mci005.

    Article  PubMed  CAS  Google Scholar 

  • D’Onghia A. M.; Carimi F.; De Pasquale F.; Djelouah K.; Martelli G. P. Elimination of Citrus psorosis virus by somatic embryogenesis from stigma and style culture. Plant Path. 50: 266–269; 2001. doi:10.1046/j.1365-3059.2001.00550.x.

    Article  Google Scholar 

  • D’Onghia A. M.; De Pasquale F.; Carimi F.; Savino V.; Crescimanno F. G. Somatic embryogenesis from style culture as a possible means for virus elimination in Citrus. J. Phytopath. 145: 77–79; 1997. doi:10.1111/j.1439-0434.1997.tb00367.x.

    Article  Google Scholar 

  • Endemann E.; Hristoforoglu K.; Stauber T.; Wilhelm E. Assessment of age-related polyploidy in Quercus robur L. somatic embryogenesis and regenerated plants using DNA flow cytometry. Biol. Plant (Prague). 44: 339–345; 2001. doi:10.1023/A:1012426306493.

    Article  Google Scholar 

  • Feher A.; Pasternak T. P.; Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74: 201–228; 2003. doi:10.1023/A:1024033216561.

    Article  CAS  Google Scholar 

  • Gaj M. D. Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tiss. Org. Cult. 64: 39–46; 2001. doi:10.1023/A:1010679614721.

    Article  Google Scholar 

  • Gill R.; Saxena P. K. Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogea): promotive role of thidiazuron. Can. J. Bot. 70: 1186–1192; 1992. doi:10.1139/b92-147.

    Article  CAS  Google Scholar 

  • Gill R.; Saxena P. K. Somatic embryogenesis in Nicotiana tabacum L.: induction by thidiazuron of direct embryo differentiation from cultural leaf discs. Plant Cell. Rep. 12: 154–159; 1993. doi:10.1007/BF00239097.

    Article  Google Scholar 

  • Goussard P. G.; Wild J. The use of in vitro somatic embryogenesis to eliminate phloem limited virus and nepoviruses from grapevines. Extended abstract 11th meeting ICVG, Montreux., Switzerland, pp 165–166; 1993.

    Google Scholar 

  • Goussard P. G.; Wild J.; Kasdorf G. G. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leaf roll-associated viruses from grapevines. S. Afr. J. Enol. Vitic. 12: 77–81; 1991.

    Google Scholar 

  • Hazra S.; Sathaye S. S.; Mascarenhas S. F. Direct somatic embryogenesis from peanut (Arachis hypogaea L.). Biotechnology. 7: 949–951; 1989. doi:10.1038/nbt0989-949.

    Article  Google Scholar 

  • Huai H.; Pei S. Plants used medicinally by folk healers of the Lahu people from the autonomous county of Jinping Miao, Yao, and Dai in Southwest China. Econ. Bot. 58S: 265–273; 2004. doi:10.1663/0013-0001(2004)58[S265:PUMBFH]2.0.CO;2.

    Google Scholar 

  • Hutchinson M. J.; Saxena P. K. Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium x hortorum Bailey) tissue culture. Plant Cell. Rep. 15: 512–515; 1996. doi:10.1007/BF00232984.

    Article  CAS  Google Scholar 

  • Huxley A. The new royal horticultural society dictionary of gardening. Macmillan, London1994.

    Google Scholar 

  • Ivanova A.; Velcheva M.; Denchev P.; Atanassov A.; van Onckelen H. Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol. Plant. 92: 85–89; 1994. doi:10.1111/j.1399-3054.1994.tb06658.x.

    Article  CAS  Google Scholar 

  • Jayasankar S.; Bondada B. R.; Li Z.; Gray D. J. Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid- and liquid-cultured-derived proembryonic masses. Am. J. Bot. 90: 973–979; 2003. doi:10.3732/ajb.90.7.973.

    Article  Google Scholar 

  • Johnston J. S.; Bennett M. D.; Rayburn A. L.; Galbraith D. W.; Price H. J. Reference standards for determination of DNA content of plant nuclei. Am. J. Bot. 86: 609–613; 1999. doi:10.2307/2656569.

    Article  PubMed  CAS  Google Scholar 

  • Kaminek M.; Armstrong D. J. Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol. 93: 1530–1538; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kintzios S.; Manos C.; Makri O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell. Rep. 18: 467–472; 1999. doi:10.1007/s002990050605.

    Article  CAS  Google Scholar 

  • Kitamiya E.; Suzuki S.; Sano T.; Nagata T. Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell. Rep. 19: 551–557; 2000. doi:10.1007/s002990050772.

    Article  CAS  Google Scholar 

  • Komamine A.; Kawara R.; Matsumoto M.; Sunabori S.; Toya T.; Fujimura T. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol-Plant. 28: 11–14; 1992. doi:10.1007/BF02632185.

    Google Scholar 

  • Li S.; Long C.; Liu F.; Lee S.; Guo Q.; Li R.; Liu Y. Herbs for medicinal baths among the traditional Yao communities of China. J. Ethnopharmcol. 108: 59–67; 2006. doi:10.1016/j.jep.2006.04.014.

    Article  Google Scholar 

  • Mendum M. Three new Gesneriaceae from Palawan, Philippines. Edinburgh J. Bot. 58: 435–441; 2001.

    Google Scholar 

  • Mendum M. The Gesneriaceae of Sulawesi III. Three new species of Aeschynanthus. Edinburgh J. Bot. 60: 323–330; 2004. doi:10.1017/S0960428603000271.

    Google Scholar 

  • Mendum M.; Scott S. M.; Galloway L. E. R. The Gesneriaceae of Sulawesi IV. Two new species of Aeschynanthus. Edinburgh J. Bot. 63: 67–72; 2006. doi:10.1017/S0960428606000345.

    Article  Google Scholar 

  • Merkle S. A. Somatic embryogenesis in ornamentals. In: GeneveR. L.; PreeceJ. E.; MerkleS. A. (eds) Biotechnology of ornamental plants. CAB, Wallingford, UK, pp 13–33; 1997.

    Google Scholar 

  • Michalczuk L.; Cooke T. J.; Cohen J. D. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry. 31: 1097–1103; 1992a. doi:10.1016/0031-9422(92)80241-6.

    Article  CAS  Google Scholar 

  • Michalczuk L.; Druart P. Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil (R) cherry rootstock (Prunus incisa x serrula ‘GM 9’) and in hormone-dependent, non-embryogenic calli of Prunus incisa x serrula and Prunus domestica. Physiol. Plant. 107: 426–432; 1999. doi:10.1034/j.1399-3054.1999.100408.x.

    Article  CAS  Google Scholar 

  • Michalczuk L.; Ribnicky D. M.; Cooke T. J.; Cohen J. D. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell culture. Plant Physiol. 100: 1346–1353; 1992b.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Navas-Castillo J.; Moreno P.; Duran-Vila N. Citrus psorosis, ringspot, cristacortis and concave gum pathogens are maintained in callus culture. Plant Cell. Tiss. Org. Cult. 40: 133–137; 1995. doi:10.1007/BF00037666.

    Article  Google Scholar 

  • Paludan N. Inactivation of tobacco mosaic virus in Aeschynanthus hildebrandii by means of heat treatment, chemotherapy and meristem-tip culture. Tidsskr. Planteavl. 89: 273–278; 1985.

    Google Scholar 

  • Parrella G.; Gognalons P.; Gebre-Selassie K.; Vovlas C.; Marchoux G. An update of the host range of tomato spotted wilt virus. J. Plant Path. 85: 227–264; 2003.

    Google Scholar 

  • Pasternak T.; Miskolczi P.; Ayaydin F.; Meszaros T.; Dudits D.; Feher A. Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul. 32: 129–141; 2000. doi:10.1023/A:1010793226030.

    Article  CAS  Google Scholar 

  • Rajasekaran K.; Hein M. B.; Davis G. C.; Carnes M. G.; Vasil I. K. Exogenous growth regulators in leaves and tissue cultures of Pennisetum purpureum Schum. J. Plant Physiol. 130: 13–25; 1987.

    CAS  Google Scholar 

  • Rashid M. H.; Jong K.; Mendum M. Cytotaxonomic observations in the genus Aeschynanthus (Gensneriaceae). Edinburgh. J. Bot. 58: 31–43; 2001. doi:10.1017/S0960428601000452.

    Google Scholar 

  • Shibli R. A.; Shatnawi M.; Abu-Ein; Al-Juboory K. H. Somatic embryogenesis and plant recovery from callus of ‘Nabali’ olive (Olea europea L.). Sci. Hort. 88: 243–256; 2001. doi:10.1016/S0304-4238(00)00241-7.

    Article  Google Scholar 

  • Thomas J. C.; Katterman F. R. Cytokinin activity induced by thidiazuron. Plant Physiol. 81: 681–683; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L.; Levasseur C.; Tremblay F. M. Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am. J. Bot. 86: 1373–1381; 1999. doi:10.2307/2656920.

    Article  PubMed  Google Scholar 

  • Visser C.; Qureshi J. A.; Gill R.; Saxena P. K. Morphoregulatory role of thidiazuron: substitutionof auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl culture. Plant Physiol. 99: 1704–1707; 1992.

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S.; Sabala I.; Bozhkov P.; Dyachok J.; Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell. Tiss. Org. Cult. 69: 233–249; 2002. doi:10.1023/A:1015673200621.

    Article  Google Scholar 

  • Whitton B.; Healy W.; Roh M. Flowering of Aeschynanthus ‘Koral’ at fluctuating and constant temperatures. J. Amer. Soc. Hort. Sci. 115: 906–909; 1990.

    Google Scholar 

  • Wilhelm E. Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell. Dev. Biol-Plant. 36: 349–357; 2000. doi:10.1007/s11627-000-0062-y.

    Article  CAS  Google Scholar 

  • Zettler F. W.; Nagel J. Infection of cultivated gesneriads by two strains of tobacco mosaic virus. Plant Dis. 67: 1123–1125; 1983. doi:10.1094/PD-67-1123.

    Article  Google Scholar 

  • Zhang Q.; Chen J.; Henny R. J. Somatic embryogenesis and plant regeneration of leaf, petiole, and stem explants of Golden Pothos. Plant Cell. Rep. 23: 587–595; 2005. doi:10.1007/s00299-004-0882-z.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q.; Chen J.; Henny R. J. Regeneration of Syngonium podophyllum ‘Variegatum’ through direct somatic embryogenesis. Plant Cell. Org. Tiss. Cult. 84: 181–188; 2006.

    CAS  Google Scholar 

  • Zonneveld B. J. M.; Leitch I. J.; Bennett M. D. First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96: 229–244; 2005. doi:10.1093/aob/mci170.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Jaroslav Doležel at the Institute of Experimental Botany, Olomouc, Czech Republic and Dr. Thomas G. Ranney at North Carolina State University for providing Pisum sativum L. ‘Ctirad’ seeds, Wekiwa Gardens, Inc., Apopka, Florida for initially providing us with Aeschynanthus radicans ‘Mona Lisa’ plant materials, Terri Mellich for performing DNA flow cytometry analysis, and Russell Caldwell for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Additional information

Editor: Praveen K. Saxena

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cui, J., Chen, J. & Henny, R.J. Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. In Vitro Cell.Dev.Biol.-Plant 45, 34–43 (2009). https://doi.org/10.1007/s11627-008-9147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9147-9

Keywords

  • Aeschynanthus
  • Flow cytometry
  • Medicinal plants
  • Ornamental foliage plants
  • Somatic embryogenesis