Abstract
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.
This is a preview of subscription content, access via your institution.




References
Bennett M. D.; Leitch I. J. Nuclear DNA amounts in angiosperms: 583 new estimates. Ann. Bot. 80: 169–196; 1997. doi:10.1006/anbo.1997.0415.
Binzel M. L.; Sankhla N.; Joshi S.; Sankhla D. Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell. Rep. 15: 536–540; 1996. doi:10.1007/BF00232989.
Chase A. R. Corynespora leaf spot of Aeschynanthus pulcher and relate plants. Plant Dis. 66: 739–740; 1982.
Chhetri D. R.; Basnet D.; Chiu P. F.; Kalikotay S.; Chhetri G.; Parajuli S. Current status of ethnomedicinal plants in the Darjeeling Himalaya. Curr. Sci. 89: 264–268; 2005.
Compton M. E.; Gray D. J. Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell. Rep. 12: 61–65; 1993. doi:10.1007/BF00241935.
De Jong A. J.; Schmidt E. D. L.; De Vriess S. C. Early events in higher plant embryogenesis. Plant Mol. Biol. 22: 367–377; 1993. doi:10.1007/BF00014943.
Denduangboripant J.; Cronk Q. C. High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc. Roy. Soc. Lond. B. 267: 1407–1415; 2000. doi:10.1098/rspb.2000.1157.
Dolezel J.; Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99–110; 2005. doi:10.1093/aob/mci005.
D’Onghia A. M.; Carimi F.; De Pasquale F.; Djelouah K.; Martelli G. P. Elimination of Citrus psorosis virus by somatic embryogenesis from stigma and style culture. Plant Path. 50: 266–269; 2001. doi:10.1046/j.1365-3059.2001.00550.x.
D’Onghia A. M.; De Pasquale F.; Carimi F.; Savino V.; Crescimanno F. G. Somatic embryogenesis from style culture as a possible means for virus elimination in Citrus. J. Phytopath. 145: 77–79; 1997. doi:10.1111/j.1439-0434.1997.tb00367.x.
Endemann E.; Hristoforoglu K.; Stauber T.; Wilhelm E. Assessment of age-related polyploidy in Quercus robur L. somatic embryogenesis and regenerated plants using DNA flow cytometry. Biol. Plant (Prague). 44: 339–345; 2001. doi:10.1023/A:1012426306493.
Feher A.; Pasternak T. P.; Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74: 201–228; 2003. doi:10.1023/A:1024033216561.
Gaj M. D. Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tiss. Org. Cult. 64: 39–46; 2001. doi:10.1023/A:1010679614721.
Gill R.; Saxena P. K. Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogea): promotive role of thidiazuron. Can. J. Bot. 70: 1186–1192; 1992. doi:10.1139/b92-147.
Gill R.; Saxena P. K. Somatic embryogenesis in Nicotiana tabacum L.: induction by thidiazuron of direct embryo differentiation from cultural leaf discs. Plant Cell. Rep. 12: 154–159; 1993. doi:10.1007/BF00239097.
Goussard P. G.; Wild J. The use of in vitro somatic embryogenesis to eliminate phloem limited virus and nepoviruses from grapevines. Extended abstract 11th meeting ICVG, Montreux., Switzerland, pp 165–166; 1993.
Goussard P. G.; Wild J.; Kasdorf G. G. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leaf roll-associated viruses from grapevines. S. Afr. J. Enol. Vitic. 12: 77–81; 1991.
Hazra S.; Sathaye S. S.; Mascarenhas S. F. Direct somatic embryogenesis from peanut (Arachis hypogaea L.). Biotechnology. 7: 949–951; 1989. doi:10.1038/nbt0989-949.
Huai H.; Pei S. Plants used medicinally by folk healers of the Lahu people from the autonomous county of Jinping Miao, Yao, and Dai in Southwest China. Econ. Bot. 58S: 265–273; 2004. doi:10.1663/0013-0001(2004)58[S265:PUMBFH]2.0.CO;2.
Hutchinson M. J.; Saxena P. K. Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium x hortorum Bailey) tissue culture. Plant Cell. Rep. 15: 512–515; 1996. doi:10.1007/BF00232984.
Huxley A. The new royal horticultural society dictionary of gardening. Macmillan, London1994.
Ivanova A.; Velcheva M.; Denchev P.; Atanassov A.; van Onckelen H. Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol. Plant. 92: 85–89; 1994. doi:10.1111/j.1399-3054.1994.tb06658.x.
Jayasankar S.; Bondada B. R.; Li Z.; Gray D. J. Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid- and liquid-cultured-derived proembryonic masses. Am. J. Bot. 90: 973–979; 2003. doi:10.3732/ajb.90.7.973.
Johnston J. S.; Bennett M. D.; Rayburn A. L.; Galbraith D. W.; Price H. J. Reference standards for determination of DNA content of plant nuclei. Am. J. Bot. 86: 609–613; 1999. doi:10.2307/2656569.
Kaminek M.; Armstrong D. J. Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol. 93: 1530–1538; 1990.
Kintzios S.; Manos C.; Makri O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell. Rep. 18: 467–472; 1999. doi:10.1007/s002990050605.
Kitamiya E.; Suzuki S.; Sano T.; Nagata T. Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell. Rep. 19: 551–557; 2000. doi:10.1007/s002990050772.
Komamine A.; Kawara R.; Matsumoto M.; Sunabori S.; Toya T.; Fujimura T. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol-Plant. 28: 11–14; 1992. doi:10.1007/BF02632185.
Li S.; Long C.; Liu F.; Lee S.; Guo Q.; Li R.; Liu Y. Herbs for medicinal baths among the traditional Yao communities of China. J. Ethnopharmcol. 108: 59–67; 2006. doi:10.1016/j.jep.2006.04.014.
Mendum M. Three new Gesneriaceae from Palawan, Philippines. Edinburgh J. Bot. 58: 435–441; 2001.
Mendum M. The Gesneriaceae of Sulawesi III. Three new species of Aeschynanthus. Edinburgh J. Bot. 60: 323–330; 2004. doi:10.1017/S0960428603000271.
Mendum M.; Scott S. M.; Galloway L. E. R. The Gesneriaceae of Sulawesi IV. Two new species of Aeschynanthus. Edinburgh J. Bot. 63: 67–72; 2006. doi:10.1017/S0960428606000345.
Merkle S. A. Somatic embryogenesis in ornamentals. In: GeneveR. L.; PreeceJ. E.; MerkleS. A. (eds) Biotechnology of ornamental plants. CAB, Wallingford, UK, pp 13–33; 1997.
Michalczuk L.; Cooke T. J.; Cohen J. D. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry. 31: 1097–1103; 1992a. doi:10.1016/0031-9422(92)80241-6.
Michalczuk L.; Druart P. Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil (R) cherry rootstock (Prunus incisa x serrula ‘GM 9’) and in hormone-dependent, non-embryogenic calli of Prunus incisa x serrula and Prunus domestica. Physiol. Plant. 107: 426–432; 1999. doi:10.1034/j.1399-3054.1999.100408.x.
Michalczuk L.; Ribnicky D. M.; Cooke T. J.; Cohen J. D. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell culture. Plant Physiol. 100: 1346–1353; 1992b.
Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.
Navas-Castillo J.; Moreno P.; Duran-Vila N. Citrus psorosis, ringspot, cristacortis and concave gum pathogens are maintained in callus culture. Plant Cell. Tiss. Org. Cult. 40: 133–137; 1995. doi:10.1007/BF00037666.
Paludan N. Inactivation of tobacco mosaic virus in Aeschynanthus hildebrandii by means of heat treatment, chemotherapy and meristem-tip culture. Tidsskr. Planteavl. 89: 273–278; 1985.
Parrella G.; Gognalons P.; Gebre-Selassie K.; Vovlas C.; Marchoux G. An update of the host range of tomato spotted wilt virus. J. Plant Path. 85: 227–264; 2003.
Pasternak T.; Miskolczi P.; Ayaydin F.; Meszaros T.; Dudits D.; Feher A. Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul. 32: 129–141; 2000. doi:10.1023/A:1010793226030.
Rajasekaran K.; Hein M. B.; Davis G. C.; Carnes M. G.; Vasil I. K. Exogenous growth regulators in leaves and tissue cultures of Pennisetum purpureum Schum. J. Plant Physiol. 130: 13–25; 1987.
Rashid M. H.; Jong K.; Mendum M. Cytotaxonomic observations in the genus Aeschynanthus (Gensneriaceae). Edinburgh. J. Bot. 58: 31–43; 2001. doi:10.1017/S0960428601000452.
Shibli R. A.; Shatnawi M.; Abu-Ein; Al-Juboory K. H. Somatic embryogenesis and plant recovery from callus of ‘Nabali’ olive (Olea europea L.). Sci. Hort. 88: 243–256; 2001. doi:10.1016/S0304-4238(00)00241-7.
Thomas J. C.; Katterman F. R. Cytokinin activity induced by thidiazuron. Plant Physiol. 81: 681–683; 1986.
Tremblay L.; Levasseur C.; Tremblay F. M. Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am. J. Bot. 86: 1373–1381; 1999. doi:10.2307/2656920.
Visser C.; Qureshi J. A.; Gill R.; Saxena P. K. Morphoregulatory role of thidiazuron: substitutionof auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl culture. Plant Physiol. 99: 1704–1707; 1992.
von Arnold S.; Sabala I.; Bozhkov P.; Dyachok J.; Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell. Tiss. Org. Cult. 69: 233–249; 2002. doi:10.1023/A:1015673200621.
Whitton B.; Healy W.; Roh M. Flowering of Aeschynanthus ‘Koral’ at fluctuating and constant temperatures. J. Amer. Soc. Hort. Sci. 115: 906–909; 1990.
Wilhelm E. Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell. Dev. Biol-Plant. 36: 349–357; 2000. doi:10.1007/s11627-000-0062-y.
Zettler F. W.; Nagel J. Infection of cultivated gesneriads by two strains of tobacco mosaic virus. Plant Dis. 67: 1123–1125; 1983. doi:10.1094/PD-67-1123.
Zhang Q.; Chen J.; Henny R. J. Somatic embryogenesis and plant regeneration of leaf, petiole, and stem explants of Golden Pothos. Plant Cell. Rep. 23: 587–595; 2005. doi:10.1007/s00299-004-0882-z.
Zhang Q.; Chen J.; Henny R. J. Regeneration of Syngonium podophyllum ‘Variegatum’ through direct somatic embryogenesis. Plant Cell. Org. Tiss. Cult. 84: 181–188; 2006.
Zonneveld B. J. M.; Leitch I. J.; Bennett M. D. First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96: 229–244; 2005. doi:10.1093/aob/mci170.
Acknowledgements
Authors thank Dr. Jaroslav Doležel at the Institute of Experimental Botany, Olomouc, Czech Republic and Dr. Thomas G. Ranney at North Carolina State University for providing Pisum sativum L. ‘Ctirad’ seeds, Wekiwa Gardens, Inc., Apopka, Florida for initially providing us with Aeschynanthus radicans ‘Mona Lisa’ plant materials, Terri Mellich for performing DNA flow cytometry analysis, and Russell Caldwell for critically reading this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: Praveen K. Saxena
Rights and permissions
About this article
Cite this article
Cui, J., Chen, J. & Henny, R.J. Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. In Vitro Cell.Dev.Biol.-Plant 45, 34–43 (2009). https://doi.org/10.1007/s11627-008-9147-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11627-008-9147-9
Keywords
- Aeschynanthus
- Flow cytometry
- Medicinal plants
- Ornamental foliage plants
- Somatic embryogenesis