Skip to main content
Log in

The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz)

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Seashore paspalum (Paspalum vaginatum Swartz) is a salt tolerant, fine textured turfgrass used on golf courses in coastal, tropical, and subtropical regions. A callus induction and plant regeneration protocol for this commercially important turfgrass species has been developed. Induction of highly regenerable callus with approximately 400 shoots per cultured immature inflorescence (1 cm in length) was achieved by culturing 0.2 cm segments on media with 3 mg l−1 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.1 or 1.0 mg l−1 benzylaminopurine (BA). A multifactorial experiment demonstrated the combination of 3 mg l−1 dicamba and 1.0 mg l−1 BA for induction of callus resulted in 12 times higher plant regeneration frequency compared to 3 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone or ten times higher plant regeneration frequency than the combination of 3 mg l−1 2,4-D and 1.0 mg l−1 BA. These results are expected to support the development of a genetic transformation protocol for seashore paspalum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Ahn B. J.; Huang F. H.; King J. W. Plant regeneration through somatic embryogenesis in common bermudagrass tissue culture. Crop Sci. 25: 1107–1109; 1985.

    Google Scholar 

  • Ahn B. J.; Huang F. H.; King J. W. Regeneration of bermudagrass cultivars and evidence of somatic embryogenesis. Crop Sci. 27: 594–597; 1987.

    CAS  Google Scholar 

  • Altpeter F.; Posselt U. K. Improved plant regeneration from cell suspensions of commercial cultivars breeding and inbred lines of perennial ryegrass (Lolium perenne). J. Plant Physiol. 156: 790–796; 2000.

    CAS  Google Scholar 

  • Altpeter F.; Vasil V.; Srivastava V.; Stoeger E.; Vasil I. K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16: 12–17; 1996.

    Article  CAS  Google Scholar 

  • Altpeter F.; Xu J.; Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage and turf type cultivars. Mol. Breeding 6: 519–528; 2000.

    Article  CAS  Google Scholar 

  • Artunduaga I. R.; Taliaferro C. M.; Johnson B. L. Effect of auxin concentration and growth of embryogenic callus from young inflorescence explants of old world bluestem (Bothriochloa spp.) and Bermuda (Cynodon spp.) grasses. Plant Cell Tissue Organ Cult. 12: 13–19; 1988.

    Article  CAS  Google Scholar 

  • Artunduaga I. R.; Taliaferro C. M.; Johnson B. L. Induction and growth of callus from immature inflorescences of “Zebra” bermudagrass as affected by casein hydrolysate and 2,4-D concentration. In Vitro Cell Dev. Biol. Plant 25: 753–756; 1989.

    Article  CAS  Google Scholar 

  • Bovo O. A.; Mroginski L. A. Tissue culture in Paspalum (Gramineae): plant regeneration from cultivated inflorescences. J. Plant Physiol. 124: 481–492; 1986.

    CAS  Google Scholar 

  • Bradley D. E.; Bruneau A. H.; Qu R. Effects of cultivar, explant treatment, and medium supplements on callus induction and plantlet regeneration in perennial ryegrass. Int. Turfgrass Soc. Res. J. 9: 152–156; 2001.

    Google Scholar 

  • Burson B. L. Genome relationship among four diploid Paspalum species. Bot. Gaz. 142: 431–434; 1981.

    Article  Google Scholar 

  • Cai T.; Butler L. Plant regeneration from embryogenic callus initiated from immature inflorescences of several high tannin sorghums. Plant Cell Tissue Organ Cult. 20: 101–110; 1990.

    Article  Google Scholar 

  • Cardona C. A.; Duncan R. R. Callus induction and high efficiency plant regeneration via somatic embryogenesis in paspalum. Crop Sci. 37: 1297–1302; 1997.

    Google Scholar 

  • Castillo A. M.; Egaña B.; Sanz J. M.; Cistué L. Somatic embryogenesis and plant regeneration from barely cultivars grown in Spain. Plant Cell Rep. 17: 902–906; 1998.

    Article  CAS  Google Scholar 

  • Chaudhury A.; Qu R. Somatic embryogenesis and plant regeneration of turf-type bermudagrass effect of 6-benzyladenine in callus induction medium. Plant Cell Tissue Organ Cult. 60: 113–120; 2000.

    Article  CAS  Google Scholar 

  • Cho M. J.; Ha C. D.; Lemaux P. G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep. 19: 1084–1089; 2000.

    Article  CAS  Google Scholar 

  • Dale P. J.; Dalton S. J. Immature inflorescence culture in Lolium, Festuca, Phleum and Dactylis. Z. Pflanzenphysiol. 111: 39–45; 1983.

    Google Scholar 

  • Dale P. J.; Thomas E.; Brettell R. I. S. Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum. Plant Cell Tissue Organ Cult. 1: 47–55; 1981.

    Article  Google Scholar 

  • Deambrogio E.; Dale P. J. Effect of 2,4-D on the frequency of regenerated plants in barley and on genetic variability between them. Cereal. Res. Comm. 8: 417–423; 1980.

    CAS  Google Scholar 

  • Duncan R. R. The environmentally sound turfgrass of the future. USGA Green Sect. Rec. 341: 9–11; 1996.

    Google Scholar 

  • Jain M.; Chengalrayan K.; Gallo M.; Mislevy P. Embryogenic callus induction and regeneration in a pentaploid hybrid bermudagrass CV. Tifton 85. Crop Sci. 45: 1069–1072; 2005.

    Article  CAS  Google Scholar 

  • Jogeswar G.; Randadheer D.; Anjaiah V.; Kavi Kishor P. B. High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev. Biol. Plant. 43: 159–166; 2007 doi:10.1007/s11627-007-9033-x.

    Google Scholar 

  • Kavi Kishor P. B.; Rao A. M.; Dhar A. C.; Naidu K. R. Plant regeneration in tissue cultures of some millets. Ind. J. Exp. Biol. 30: 729–733; 1992.

    Google Scholar 

  • Lu C.; Vasil I. K. Somatic embryogenesis and plant regeneration in tissue cultures of Panicum maximum Jacq. Am. J. Bot. 69: 77–81; 1982.

    Article  Google Scholar 

  • Morton J. F. Salt-tolerant silt grass (Paspalum vaginatum Swartz). Proc. Fla. State Hert. Soc 86: 482–490; 1973.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Murata M. Effect of auxin and cytokinin on induction of sister chromatid exchanges in cultured cells of wheat (Triticum aestivum L.). Theor. Appl. Genet. 78: 521–524; 1989.

    Article  CAS  Google Scholar 

  • Peacock C. H.; Dudeck A. E. Physiological and growth responses of seashore paspalum to salinity. Hort Sci. 20: 111–112; 1985.

    Google Scholar 

  • Poeaim A.; Matsuda Y.; Murata T. Plant regeneration from immature inflorescences of zoysiagrass (Zoysia spp.). Plant Biotechnol. 223: 245–248; 2005.

    CAS  Google Scholar 

  • Qu R.; Chaudhury A. Improved young inflorescence culture and regeneration of ‘Tifway’ bermudagrass (Cynodon transvaalensis × C. dactylon). Int. Turfgrass Soc. Res. J. 9: 198–201; 2001.

    Google Scholar 

  • Rao A. M.; Padma Sree K.; Kavi Kishor P. B. Enhanced plant regeneration in grain and sweet sorghum by asparagines, proline and cefotaxime. Plant Cell Rep. 15: 72–75; 1995.

    Article  CAS  Google Scholar 

  • SAS Institute Inc SAS Institute Inc Version 9.1.. SAS Institute, Cary, NC, USA2005.

    Google Scholar 

  • Trifonova A.; Madsen S.; Olesen A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 161: 871–880; 2001.

    Article  CAS  Google Scholar 

  • Zimmy J.; Lörz H. High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereal L.). Plant Breed 102: 89–100; 1989.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Erika Erickson and Sima Patel for excellent technical assistance. We would also like to thank Turfgrass America, Houston, Texas, USA for provision of sod from Seashore paspalum cultivar Sea Isle 1. We are grateful for financial support from USDA-CSREES T-STAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Additional information

Gregory C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neibaur, I., Gallo, M. & Altpeter, F. The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell.Dev.Biol.-Plant 44, 480–486 (2008). https://doi.org/10.1007/s11627-008-9143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9143-0

Keywords

Navigation