Skip to main content
Log in

Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro: evaluation of multiple nutrient formulations and cytokinin types

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The growth of black walnut shoot cultures was compared on media differing in nutrient formulation (MS, DKW, WPM, and 1/2X DKW), cytokinin type (ZEA, BA, and TDZ), and cytokinin concentration. On WPM and 1/2X DKW media, hyperhydricity was observed at frequencies of 60–100% compared with frequencies of 10–40% on the high-salt media (DKW and MS). All three cytokinins facilitated shoot regeneration from nodal cuttings, but recurrent elongation was only observed for BA (5–12.5 μM) and ZEA (5–25 μM) with mean shoot heights of 70–80 mm being possible after two culture periods (6–8 wk) for the fastest elongating lines. ZEA was effective across all six shoot lines with mean shoot heights of at least 35 mm over two culture periods, but two of the shoot lines were ‘nonresponsive’ to BA with mean shoot heights of <15 mm. In contrast, when shoot tip explants were used for culture multiplication, ZEA was the least effective cytokinin with proliferation frequencies of only 30–40%. The proliferation frequencies were twice as great (75–87%) for TDZ (0.05–0.1 μM), but most of the shoots regenerated were swollen or fasciated in morphology. High rates of proliferation (61–88%) were also possible using BA (12.5–25 μM), but axillary shoots did not elongate well, growing to heights of only 5–10 mm, on average, after 4–5 wk. Since the cytokinin types and concentrations required for high-frequency (>50%) axillary proliferation had adverse effects on the morphology and growth potential of the shoots, multiplication strategies based on the use of nodal cuttings are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Amin M. N.; Jaiswal V. S. Micropropagation as an aid to rapid cloning of a guava cultivar. Sci. Hortic. 36: 89–95; 1988.

    Article  Google Scholar 

  • Amiri M. E. Effect of mineral concentration on tissue-cultured walnut (Juglans regia var. Zeiabadi) growth. Acta Hortic. 705: 383–386; 2006.

    CAS  Google Scholar 

  • Barbas E.; Chaillou S.; Cornu D.; Doumas P.; Jay-Allemand C.; Lamaze T. Orthophosphate nutrition of in vitro propagated hybrid walnut (Juglans nigra x Juglans regia) trees: Pi(32Pi) uptake and transport in relation to callus and shoot development. Plant Physiol. Biochem. 31: 41–49; 1993a.

    CAS  Google Scholar 

  • Barbas E.; Jay-Allemand C.; Doumas P.; Chaillou S.; Cornu D. Effects of gelling agents on growth, mineral composition, and naphthoquinone content of in vitro explants of hybrid walnut tree (Juglans regia x Juglans nigra). Ann. Sci. For. 50: 177–186; 1993b.

    Article  Google Scholar 

  • Barghchi M.; Alderson J. G. The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regul. 10: 31–35; 1996.

    Article  Google Scholar 

  • Beauchesne G. Les milieuz mineraux utilizes en culture et leur incidence sur l’apparition de boutures d’aspect pathologique. C. R. Acad. Agric. Fr. 67: 1389–1397; 1981.

    Google Scholar 

  • Beineke W. F. Genetic improvement of black walnut for timber production. Plant Breed. Rev. 1: 236–266; 1983.

    Google Scholar 

  • Beineke W. F. Grafting black walnut. Purdue University Cooperative Extension Service FNR-105, West Lafayette, IN; 1984.

    Google Scholar 

  • Caruso, J. L. In vitro axillary shoot formation and rooting in black walnut mature embryos. In R. P. Guries (Ed.), Proceedings of the 3rd North Central Tree Improvement Conference; 1983: pp. 144–149.

  • Chalupa V. Clonal propagation of broad-leaved forest tree in vitro. Commun. Inst. For. Cechoslov. 12: 255–271; 1981.

    Google Scholar 

  • Coggeshall, M. V.; Beineke, W. F. Black walnut vegetative propagation: The challenge continues. In J. W. Van Sambeek (Ed.), Proceedings of the Fifth Black Walnut Symposium. USDA Forest Service General Technical Report NC-191; 1997: pp. 70–77.

  • Compton M. E.; Gray D. J.; Gaba V. P. Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tissue Organ Cult. 77: 231–243; 2004.

    Article  CAS  Google Scholar 

  • Cossio F.; Minolta G. Prove preliminari di coltura in vitro de embrioni isolati de noce (Juglans regia L.) e confronto tra differenti combinazioni di sali minierali. Rivista della Ortoflorofrutticoltura Italiana 67: 287–298; 1983.

    Google Scholar 

  • Daguin F.; Letouze R. Ammonium-induced vitrification in cultured tissues. Physiol. Plant. 66: 94–98; 1986.

    Article  CAS  Google Scholar 

  • Debergh P. D. Micropropagation of woody species: State of the art and in vitro aspects. Acta Hortic. 227: 287–295; 1988.

    Google Scholar 

  • Driver J. A.; Kuniyuki A. H. In vitro propagation of Paradox walnut rootstock. HortScience 19: 507–509; 1984.

    Google Scholar 

  • Fatima A.; Kamili A. N.; Shah A. M. Plantlet regeneration from excised embryonal axes, shoot apices, and nodal segments of Juglans regia L. Acta Hortic. 705: 387–392; 2006.

    Google Scholar 

  • Gaspar T. Vitrification in micropropagation. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, vol. 17: High-tech and micropropagation I. Springer, Berlin, Germany, pp 116–126; 1991.

    Google Scholar 

  • Geerts M.; Van Cleemput O.; Debergh P. C. Translocation of calcium in micropropagated Prunus avium. L. Mededelingen van de Faculteit van de Landouwwetenschappen Rijksuniversiteit. Gent 52: 1449–1456; 1987.

    Google Scholar 

  • George E. F. Plant propagation by tissue culture, vol. 1. 2nd ed. Exegetics, Edington, England, pp 1–574; 1993.

    Google Scholar 

  • George E. F. Plant propagation by tissue culture, vol. 2. 2nd ed. Exegetics, Edington, England, pp 575–1361; 1996.

    Google Scholar 

  • George E. F.; Puttock D. J. M.; George H. J. Plant culture media. Exegetics, Edington, England, 1987, 987 p.

    Google Scholar 

  • Gruselle R.; Badia N.; Boxus P. Walnut micropropagation: First results. Acta Hortic. 212: 511–515; 1987.

    Google Scholar 

  • Gruselle R.; Boxus P. Walnut micropropagation. Acta Hortic. 284: 45–52; 1990.

    Google Scholar 

  • Gruselle R.; Nicaise C.; Boxus P. Regulation of in vitro shoot multiplication in Persian walnut by different carbon sources and by ammonium phosphate. Bull. Rech. Agron. Gembloux 30: 47–53; 1995.

    CAS  Google Scholar 

  • Heile C.; Gaffney G.; Preece J.; Meyers O.; Van Sambeek J. In vitro culture of Juglans nigra seedling shoot tips. HortScience 19: 576; 1984.

    Google Scholar 

  • Heile-Sudholt C.; Hutteman C. A.; Preece J. E.; Van Sambeek J. W.; Gaffney G. R. In vitro embryonic axis and seedling shot tip culture of Juglans nigra L. Plant Cell Tissue Organ Cult. 6: 189–197; 1986.

    Article  Google Scholar 

  • Jay-Allemand C.; Capelli P.; Cornu D. Root development of in vitro hybrid walnut microcuttings in a vermiculite-containing Gelrite medium. Sci. Hortic. 51: 335–342; 1992.

    Article  Google Scholar 

  • Jay-Allemand C.; Peng S.; Capelli P.; Cornu D. Micropropagation of hybrid walnut trees: Some factors involved in rooting. Acta Hortic. 311: 117–124; 1993.

    Google Scholar 

  • Khan S. B.; Preece J. E.; Taylor B. H.; Van Sambeek J. E. Effects of BA and TDZ in LP medium on in vitro growth of adult black walnut (Juglans nigra L.) nodal explants. In Vitro Cell. Dev. Biol., Plant 32: 106A; 1996.

    Google Scholar 

  • Khan S. B.; Preece J. E.; Taylor B. H.; Van Sambeek J. W. Response of adult black walnut (Juglans nigra L.) nodal explants on DKW and LP medium. HortScience 30: 874; 1995.

    Google Scholar 

  • Kevers C.; Gaspar T. Vitrification of carnation in vitro: Changes in water content, extracellular space, air volume, and ion levels. Physiol. Veg. 24: 647–653; 1986.

    CAS  Google Scholar 

  • Kreutmeier C.; Gebhardt K.; Paul L.; Feucht W. The effect of MgSO4 and CaCl2 on regeneration of shoot tip cultures of Prunus cerasus in vitro. Gartenbauwissenschaft 49: 204–212; 1984.

    CAS  Google Scholar 

  • Lee M. H.; Ahn C. Y.; Park C. S. In vitro propagation of Juglans sinsensis Dode from bud culture. Research report of the Institute of Forest Genetics, vol. 22. Forestry Administration, Suwon, Korea, pp 159–163; 1986.

    Google Scholar 

  • Leonhardt W.; Kandeler R. Ethylene accumulation in cultures vessels—A reason for vitrification. Acta Hortic. 212: 223–229; 1987.

    Google Scholar 

  • Leslie C.; McGranahan G. H. Micropropagation of Persian walnut (Juglans regia L.). In: Y. P. S. Bajaj (ed) Biotechnology in agriculture and forestry, vol. 18: High tech and micropropagation II. Springer, Berlin, pp 136–150; 1992, Chapter I.7.

    Google Scholar 

  • Lloyd G.; McCown B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc. Int. Plant Prop. Soc. 30: 421–427; 1981.

    Google Scholar 

  • Long L. M.; Preece J. E.; Van Sambeek J. W. Adventitious regeneration of Juglans nigra L. (Eastern black walnut). Plant Cell Rep. 14: 799–803; 1995.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Orlikowska T. Vitrification problems in the in vitro culture of fruit tree rootstocks. Acta Hortic. 212: 239–244; 1987.

    Google Scholar 

  • Pasqualetto P. L.; Zimmerman R. H.; Fordham I. The influence of cation and gelling agent concentration on vitrification of apple cultivars in vitro. Plant Cell Tissue Organ Cult. 14: 31–40; 1988.

    Article  CAS  Google Scholar 

  • Piagnani C.; Zocchi G.; Mignani I. Influence of Ca2+ and 6-benzyladenine on chestnut (Castanea sativa Mill) in vitro shoot-tip necrosis. Plant Sci. 118: 89–95; 1996.

    Article  CAS  Google Scholar 

  • Preece J. E.; Compton M. E. Problems with explant exudation in micropropagation. Chapter I.10. In: Y. P. S. Bajaj (ed) Biotechnology in agriculture and forestry, vol. 17: High-tech and micropropagation. Springer, Berlin, pp 168–189; 1991.

    Google Scholar 

  • Revilla M. A.; Majada J.; Rodriguez R. Walnut (Juglans regia L.) micropropagation. Ann. Sci. For. 46Suppl.: 149s–151s; 1989.

    Article  Google Scholar 

  • Rodriguez R. Stimulation of multiple shoot-bud formation in walnut seeds. HortScience 17: 592; 1982.

    Google Scholar 

  • Rodriguez R.; Revilla A.; Albuerne M.; Perez C. Walnut (Juglans spp). In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry, vol. 5: Trees II. Springer, Berlin, Germany, pp 99–126; 1989Chapter I.7.

    Google Scholar 

  • Saadat Y. A.; Hennerty M. J. Factors affecting the shoot multiplication of Persian walnut (Juglans regia L.). Sci. Hortic. 95: 251–260; 2002.

    Article  CAS  Google Scholar 

  • Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57: 431–449; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Olate M. E.; Rios D. G.; Gea M. A.; Rodriguez R.; Revilla M. A. Parameters affecting the in vitro growth and rooting of Juglans regia L. Acta Hortic. 442: 235–240; 1997.

    Google Scholar 

  • Scherer P. A.; Muller E.; Lippert H.; Wolff G. Multielement analysis of agar and Gelrite impurities investigated with inductively coupled plasma emission spectrometry as well as physical properties of the TC media prepared with agar or the gellan gum Gelrite. Acta Hortic. 226: 655–658; 1988.

    Google Scholar 

  • Schloupf R. M.; Barringer S. A.; Splittstoesser W. E. A review of hyperhydricity (vitrification) in tissue culture. Plant Growth Regul. 23: 149–158; 1995.

    Google Scholar 

  • Sha L.; McCown B. H.; Peterson L. A. Occurrence and cause of shoot-tip necrosis in shoot cultures. J. Am. Soc. Hortic. Sci. 110: 631–634; 1985.

    Google Scholar 

  • Shreve, L. W. Propagation of walnut, chestnut and pecan by rooted cuttings. In R. B. Polk (Ed.), Proceedings of the Eighth Central States Forest Tree Improvement Conference. University of Missouri, Columbia, MO; 1974: pp. 20–23.

  • Somers, P. W.; Van Sambeek, J. W.; Preece, J. E.; Gaffney, G.; Myers, O., Jr. In vitro micropropagation of black walnut (Juglans nigra L.). In B. A. Thielges (Ed.), Proceedings of the 7th North American Forest Biology Workshop; 1982: pp. 224–230.

  • Stefan S. J. Micropropagating black walnut. Am. Nurserym. 169: 89–92; 1989.

    Google Scholar 

  • Stefan, S. J.; Millikan, D. F. Tissue culture of black walnut. Walnut Counc. Bull. 14: 4, 7, and 15; 1987.

    Google Scholar 

  • Strand M. The aromatic cytokinins. Physiol. Plant. 101: 674–688; 1997.

    Article  Google Scholar 

  • USDA-FAS. Foreign Agricultural Research Service Export Commodity Aggregations, Department of Commerce, US Census Bureau, Foreign Trade Statistics. Retrieved from http://www.fas.usda.gov/ustrade; 2005.

  • Van Sambeek J. W. Grafting. In: E. L. Burde (ed) Walnut notes. USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN; 1989.

    Google Scholar 

  • Van Sambeek, J. W.; Lambus, L. J.; Kahn, S. B.; Preece, J. E. In vitro establishment of tissues from adult black walnut. In J. W. Van Sambeek (Ed.), Knowledge for the future of black walnut. Proceedings of the Fifth Black Walnut Symposium, 28–31 July 1996, USDA Forest Service, North Central Forest Experiment Station; 1997: pp. 78–92.

  • Vieitez A. M.; Ballester A.; San-Jose M. C.; Vieitez E. Anatomical and chemical studies on vitrified shoots of chestnut regenerated in vitro. Physiol. Plant. 65: 177–184; 1985.

    Article  CAS  Google Scholar 

  • Vieitez A. M.; Sanchez C.; San-Jose C. Prevention of shoot-tip necrosis in shoot cultures of chestnut and oak. Sci. Hortic. 41: 101–109; 1989.

    Article  Google Scholar 

  • Williams R. D. Black walnut. In: R. M. Burns; B. H. Honkala (eds) Silvics of North America, vol. 2: Hardwoods. Agriculture Handbook 654. USDA Forest Service, USA, pp 391–400; 1990.

    Google Scholar 

  • Williams R. R. Mineral nutrition in vitro—A mechanistic approach. Aust. J. Bot. 41: 237–251; 1993.

    Article  CAS  Google Scholar 

  • Yadov M. K.; Gaur A. K.; Garg G. K. Development of suitable protocol to overcome hyperhydricity in carnation during micropropagation. Plant Cell Tissue Organ Cult. 72: 153–156; 2003.

    Article  Google Scholar 

  • Zamani Z.; Vahdati K. Influence of carbohydrate form and nitrogen source on growth of Persian walnut shoots in vitro. Acta Hortic. 544: 537–546; 2001.

    CAS  Google Scholar 

  • Ziv M. Vitrification: Morphological and physiological disorders of in vitro plants. In: Debergh P. C.; Zimmerman R. H. (eds) Micropropagation. Kluwer, Dordrecht, The Netherlands, pp 45–69; 1991.

    Google Scholar 

  • Ziv M.; Gadasi G. Enhanced embryogenesis and plant regeneration from cucumber (Cucumis sativus L.) callus by activated charcoal in solid/liquid double-layer cultures. Plant Sci. 47: 115–122; 1986.

    Article  CAS  Google Scholar 

  • Ziv M.; Schwarts A.; Fleminger D. Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro: Implications for hardening. Plant Sci. 52: 127–134; 1987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bosela.

Additional information

Editor: Jude Grosser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosela, M.J., Michler, C.H. Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro: evaluation of multiple nutrient formulations and cytokinin types. In Vitro Cell.Dev.Biol.-Plant 44, 316–329 (2008). https://doi.org/10.1007/s11627-008-9114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9114-5

Keywords

Navigation