Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl.

  • Peng Zhao
  • Fei Wu
  • Fo-Sheng Feng
  • Wan-Jun WangEmail author


An efficient system was established for a higher frequency of protocorm-like body (PLB) formation from the callus of Dendrobium candidum Wall ex Lindl. The calluses were induced from longitudinally bisected segments of protocorms and subcultured two times every 40d on Murashige and Skoog medium with macronutrients at half strength, micronutrients at full strength, 2% sucrose, and with 8.8μM 6-Benzylaminopurine. PLB formation was achieved when calluses were transferred onto the same basal medium without any plant growth regulators. PLBs developed into intact plantlets about 2cm in height and with four roots when on basal medium with 2.7μM 1-naphthaleneacetic acid. Plantlets were transplanted into vermiculite with a 95% survival rate in a greenhouse. Histological observations proved that globular somatic embryos could be produced from the inside and surface of the embryogenic callus during PLB formation.


Differentiation Mass propagation Morphogenesis Orchid Somatic embryogenesis 



We thank Emily King for critical reading of the manuscript. This work was supported from the science foundation of Southwest Jiaotong University (X1200511130101).


  1. Arditti, J.; Ernst, R. Micropropagation of orchids. New York: Wiley; 1993.Google Scholar
  2. Bagde, P.; Sharon, M. In vitro regeneration of Oncidium ‘Gower Ramsey’ by high frequency protocorm like bodies proliferation. J Plant Physiol 2: 10–14; 1997.Google Scholar
  3. Begum, A.A.; Tamaki, M.; Tahara, M.; Kato, S. Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J Jpn Soc Hortic Sci 63: 419–427; 1994.CrossRefGoogle Scholar
  4. Chang, C.; Chang, W.C. Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 17: 251–255; 1998.CrossRefGoogle Scholar
  5. Chen, J.T.; Chang, C.; Chang, W.C. Direct somatic embryogenesis on leaf explants of Oncidium ‘Gower Ramsey’ and subsequent plant regeneration. Plant Cell Rep 19: 143–149; 1999.CrossRefGoogle Scholar
  6. Chen, J.T.; Chang, W.C. Efficient plant regeneration through somatic embryogenesis from callus of Oncidium (Orchidaceae). Plant Sci 160: 87–93; 2000.PubMedCrossRefGoogle Scholar
  7. Chen, J.T.; Chang, W.C. Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium ‘Gower Ramsey’. Plant Cell Tissue Organ Cult 69: 41–44; 2002.CrossRefGoogle Scholar
  8. Chen, T.Y.; Chang, W.C. Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell Tissue Organ Cult 76: 11–15; 2004.CrossRefGoogle Scholar
  9. Chen, W.; Cun, S.X. In vitro rapid propagation of stems of Dendrobium candidum Plant Physiol Commun 38: 145; 2002 (In Chinese).Google Scholar
  10. Chengalrayan, K.; Hazra. S.; Gallo-Meagher, M. Histological analysis of somatic embryogenesis and organogenesis induced from mature zygotic embryo-derived leaflets of peanut (Arachis hypogaea. L.). Plant Sci 161: 415–421; 2001.CrossRefGoogle Scholar
  11. Chung, H.H.; Chen, J.T.; Chang, W.C. Cytokinins induce direct somatic embryogenesis of Dendrobium Chiendmai Pink and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41: 765–769; 2005.CrossRefGoogle Scholar
  12. Chung, J.D.; Chun, C.K.; Choi, S.O. Asymbiotic germination of Cymbidium ensifolium. J Korean Soc Hort Sci 26: 182–196; 1985.Google Scholar
  13. Colli, S.; Kerbauy, G.B. Direct root tip conversion of Catasetun into protocorm-like bodies: effect of auxin and cytokinin. Plant Cell Tissue Organ Cult 33: 39–44; 1993.CrossRefGoogle Scholar
  14. Eady, C.C.; Butler, R.C.; Suo, Y. Somatic embryogenesis and plant regeneration from immature embryo cultures of onion (Allium cepa L.). Plant Cell Rep 18: 111–116; 1998.CrossRefGoogle Scholar
  15. He, J.B.; Zheng, C.Z.; Wang, S.L. Multiplication of protocorm of Dendrobium candidum. Acta Botanica Yunnanica 4: 211–212; 1982 (In Chinese).Google Scholar
  16. Hou, P.Y.; Guo, S.X. Studies on transplanting suspension-cultured protocorms of Dendrobium candidum onto solid culture medium. China J Chinese Materia Medica 30: 729–732; 2005.Google Scholar
  17. Huan, L.V.T.; Takamura. T.; Tanaka, M. Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166: 1443–1449; 2004.CrossRefGoogle Scholar
  18. Huang, L.T.; Baiocco, M.; Huy, B.P.; Mezzetti, B.; Santilocchi, R.; Rosati, P. Somatic embryogenesis in Canary Island date palm. Plant Cell Tissue Organ Cult 56: 1–7; 1999.CrossRefGoogle Scholar
  19. Ishii, Y.; Takamura, T.; Goi, M.; Tanaka, M. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep 17: 446–450; 1998.CrossRefGoogle Scholar
  20. Kerbauy, G.B. Plant regeneration of Oncidium varicosum (Orchidaceae) by means of root tip culture. Plant Cell Rep 3: 27–29; 1984.CrossRefGoogle Scholar
  21. Lee, Y.I.; Lee, N. Plant regeneration from protocorm-derived callus of Cypripedium formosanum. In Vitro Cell Dev Biol Plant 39: 475–479; 2003.CrossRefGoogle Scholar
  22. Li, S.; Shen, Z.H.; Qin, Z.; Wang, Y.F. Uptake rate of tracer elements by Lycium barbarum L. in somatic embryogenesis. J Radioanal Nucl Chem 250: 593–597; 2001.CrossRefGoogle Scholar
  23. Lim-Ho, C.L.; Lee, G.C. Clonal propagation of Oncidium from dormant buds on flower stalk. Malay Orchid Rev 22: 48–52; 1987.Google Scholar
  24. Lu, M.C. High frequency plant regeneration from callus culture of Pleione formosana Hayata. Plant Cell Tissue Organ Cult 78: 93–96; 2004.CrossRefGoogle Scholar
  25. Luo, J.P.; Jia, J.F.; Gu, Y.H.; Liu, J. High frequency somatic embryogenesis and plant regeneration in callus cultures of Astragalus adsurgens Pall. Plant Sci 143: 93–99; 1999.CrossRefGoogle Scholar
  26. Malabadi, R.B.; Mulgund, G.S.; Kallappa, N. Micropropagation of Dendrobium nobile from shoot tip sections. J Plant Physiol 162: 473–478; 2005.PubMedCrossRefGoogle Scholar
  27. Malabadi, R.B.; Mulgund, G.S.; Nataraja, K. Efficient regeneration of Vanda coerulea, an endangered orchid using thidiazuron. Plant Cell Tissue Organ Cult 76: 289–293; 2004.CrossRefGoogle Scholar
  28. Morel, G.M. Proding virus-free Cymbidium. Am Orchid Soc Bull 29: 495–497; 1960.Google Scholar
  29. Nayak, N.R.; Sahoo, S.; Patnaik, S.; Rath, S.P. Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae). Sci Hortic 94: 107–116; 2002.CrossRefGoogle Scholar
  30. Nikam, T.D.; Bansude. G.M.; Aneesh Kumar, K.C. Somatic embryogenesis in sisal (Agave sisalana Perr. ex. Engelm). Plant Cell Rep 22: 188–194; 2003.PubMedCrossRefGoogle Scholar
  31. Roy, J.; Banerjee, N. Induction of callus and plant regeneration from shoot-tip explants of Dendrobium firmbriatum Lindl. var. oculatum Hk.f. Sci Hortic 97: 333–340; 2003.CrossRefGoogle Scholar
  32. Sagawa, Y.; Kunisaki, J. T. Clonal propagation of orchids by tissue culture. Proceedings of 5th congress, Plant tissue and cell culture, pp 683–684; 1982.Google Scholar
  33. Sheelavanthmath, S.S., Murthy, H.N., Hema, B.P., Hahn, E.J., Paek, K.Y. High frequency of protocorm like bodies (PLBs) induction and plant regeneration from protocorm and leaf sections of Aerides crispum. Sci Hortic 106: 395–401; 2005.CrossRefGoogle Scholar
  34. Sheelavantmath, S.S.; Murthy, H.N.; Pyati, A.N.; Kumar, H.G..A.; Ravishankar, B.V. In vitro propagation of the endangered orchid, Geodorum densiflorum (Lam.) Schltr. through rhizome section culture. Plant Cell Tissue Organ Cult 60: 151–154; 2000.CrossRefGoogle Scholar
  35. Shiau, Y.J.; Nalawade, S.M.; Hsia, C.N.; Mulabacal, V.; Tsay, H.S. In vitro propagation of the Chinese medicinal plant, Dendrobium candidum Wall. Ex Lindl., from axenic nodal segments. In Vitro Cell Dev Biol Plant 41: 666–670; 2005.CrossRefGoogle Scholar
  36. Shimura, H.; Koda, Y. Micropropagation of Cypripedium macranthos var. rebunense through protocorm-like bodies derived from mature seeds. Plant Cell Tissue Organ Cult 78: 273–276; 2004.CrossRefGoogle Scholar
  37. Smith, D.L.; Krikorian, A.D. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D initiated embryogenic cells of carrot. Plant Physiol 72: 329–336; 1990.Google Scholar
  38. Steward, F.C.; Mapes, M.O. Morphogenesis in aseptic cell culture of Cymbidium. Bot Gaz 132: 65–70; 1971.CrossRefGoogle Scholar
  39. Van Le, B.; Hang Phuong, N.T.; Anh Hong, L.T.; Tran Thanh Van, K. High frequency shoot regeneration from Rhynchostylis gigantean (orchidaceae) using thin cell layers. Plant Growth Regul 28: 179–185, 1999.CrossRefGoogle Scholar
  40. Wimber, D.E. Clonal multiplication of Cymbidium through tissue culture of the shoot meristem. Am Orchid Soc Bull 32: 105–107; 1963.Google Scholar
  41. Ye, X.L.; Cheng, S.J.; Wang, F.X.; Qian, N.F. Morphology of immature seeds and development in vitro of Dendrobium candidum. Acta Bot Yunnanica 10: 285–290; 1988 (In Chinese).Google Scholar
  42. Young, P.S.; Murthy, H.N.; Yoeup, P.K. Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell Tissue Organ Cult 63: 67–72; 2000.CrossRefGoogle Scholar
  43. Zhang, Q.X .; Fang, Y.M. Tissue culture and in vitro seedling and protocorm-like body examination of Dendrobium candidum. Acta Bot Boreali-Occidentalia Sinica 25: 1761–1765; 2005 (In Chinese).Google Scholar
  44. Zhao, P.; Wang, W.; Feng, F.S.; Wu, F.; Yang, Z.Q.; High frequency shoot regeneration through transverse thin cell layer culture in Dendrobium candidum Wall ex Lindl. Plant Cell Tissue Organ Cult 90: 131–139; 2007.CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2007

Authors and Affiliations

  • Peng Zhao
    • 1
  • Fei Wu
    • 1
  • Fo-Sheng Feng
    • 1
  • Wan-Jun Wang
    • 1
    Email author
  1. 1.College of BioengineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations