Skip to main content
Log in

Arginine and ornithine decarboxylases in embryogenic and non-embryogenic carrot cell suspensions

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The in vivo activities of arginine and ornithine decarboxylases, key enzymes in the biosynthesis of putrescine and thus polyamines, were measured in three different cell lines of carrot (Daucus carota) during growth and somatic embryogenesis. The activities of these two enzymes differed in the different cell lines in the presence of various levels of auxin (2,4 dichlorophenoxy acetic acid), but was highest during periods of active cell division. During somatic embryo development, the activities of both enzymes were highest during globular stage formation. Thus, both enzymes were found to be active during growth and somatic embryogenesis and could contribute to polyamine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Acosta, C.; Perez-Amador, M.A.; Carbonell, J.; Granell, A. The two ways to produce putrescine in tomato are cell specific during normal development. Plant Sci. 168:1053–1057; 2005.

    Article  CAS  Google Scholar 

  • Andersen, S.E.; Bastola, D.R.; Minocha, S.C. Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA. Plant Physiol. 116:299–307; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bertoldi, D.; Tassoni, A.; Martinelli, L.; Bagni, N. Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol. Plant. 120:657–666; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Borrell, A.; Culiañez-Macià, F.A.; Altabella, T.; Besford, R.T.; Flores, D.; Tiburcio, A.F. Arginine decarboxylase is localized in chloroplasts. Plant Physiol. 109:771–776; 1995.

    PubMed  CAS  Google Scholar 

  • Feirer, R.P.; Mignon, G.; Litvay, J.D. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science 223:1433–1435; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Galston, A.W.; Sawhney, R.K.; Tiburcio, A.F.; Hamaskai, N.; Oshima, T.; Furuya, M. The control of morphogenesis by polyamines. In: Flores, H.E.; Arteca, R.N.; Shannon, J.C., eds. Polyamines and ethylene: biochemistry, physiology, and interactions. Rockville, MA: Amer. Soc. Plant Physiologists 224–237; 1990.

  • Giuliano, G.; Rosellini, D.; Terzi, M. A new method for the purification of the different stages of carrot embryoids. Plant Cell Rep. 2:216–218; 1983.

    Article  Google Scholar 

  • Joy IV, R.W.; McIntyre, D.D.; Vogel, H.J.; Thorpe, T.A. Stage-specific nitrogen metabolism in developing carrot somatic embryos. Physiol. Plant. 97:149–159; 1996.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney, R.; Tiburcio, A.F.; Altabella, T.; Galston, A.W. Polyamines in plants: An overview. J. Cell Mol. Biol. 2:1–12; 2003.

    Google Scholar 

  • Komamine, A.; Kawahara, R.; Matsumoto, M.; Sunabori, S.; Toya, T.; Fujiwara, A.; Tsukahara, M.; Smith, J.; Ito, M.; Fukuda, H.; Nomura, K.; Fujimura, T. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. Plant. 28P:11–14; 1992.

    CAS  Google Scholar 

  • Koromilas, A.E.; Kyriakidas, D.A. The existence of ornithine decarboxylene-antizyme complex in germinated barley seeds. Physiol. Plant. 72:718–724; 1988.

    Article  CAS  Google Scholar 

  • Kumar, A.; Altabella, T.; Taylor, M.R.; Tiburcio, A.T. Recent advances in polyamine research. Trends Plant Sci. 2:124–130; 1997.

    Article  Google Scholar 

  • Kumria, R.; Rajam, M.V. Alteration in polyamine titres during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci. 162:769–777; 2002.

    Article  CAS  Google Scholar 

  • Lohmeier-Vogel, E.M.; Loukanina, N.; Ferrar, T.S.; Moorhead, G.B.B.; Thorpe, T.A. N-acetyl glutamate kinase from Daucus carota suspension cultures: embryogenic expression profile, purification and characterization. Plant Physiol. Biochem. 43:854–861; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Minocha, S.C.; Minocha, R. Role of polyamines in somatic embryogenesis. In: Bajaj, Y.P.S. ed. Biotechnology in Agriculture and Forestry, Vol. 30: Somatic Embryogenesis and Synthetic Seed I. Heidelberg, Germany: Springer: 53–70; 1995.

    Google Scholar 

  • Minocha, R.; Long, S.; Maki, H.; Minocha, S.C. Assays for the activities of polyamine biosynthetic enzymes using intact tissues. Plant Physiol. Biochem. 37:597–603; 1999.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–479; 1962.

    Article  CAS  Google Scholar 

  • Nomura, K.; Komamine, A. Physiological and biochemical aspects of somatic embryogenesis. In: Thorpe, T.A.; ed. In vitro embryogenesis in plants. Dordrecht: Kluwer: 249–266; 1995.

    Google Scholar 

  • Pegg, A. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234:249–262; 1986.

    PubMed  CAS  Google Scholar 

  • Perez-Amador, M.A.; Carbonell, J. Arginine decarboxylase and putrescine oxidase in ovaries of Pisum sativum. Plant Physiol. 107:865–872; 1995.

    PubMed  CAS  Google Scholar 

  • Robie, C.A.; Minocha, S.C. Polyamines and somatic embryogen-esis in carrot. I. The effects of difluoromethylornithine and difluoromethylarginine. Plant Sci. 65:45–54; 1989.

    Article  CAS  Google Scholar 

  • Roustan, J.-P.; Latché, A.; Fallot, J. Role of ethylene on induction and expression of carrot somatic embryogenesis-relationship with polyamine metabolism. Plant Sci. 103:223–229; 1995.

    Article  Google Scholar 

  • Taiz, L.; Zieger, E. Plant physiology, 3rd edn., Sunderland, MA: Sinauer Associates, Inc; 2002.

    Google Scholar 

  • Tiburcio, A.F.; Altabella, T.; Borrell, A.; Masgrau, C. Polyamine metabolism and its regulation. Physiol. Plant. 100:666–674; 1997.

    Article  Google Scholar 

  • Thorpe, T.A. Somatic embryogenesis: morphogenesis, physiology, biochemistry and molecular biology. Korean J. Plant Tissue Cult. 27:245–258; 2000.

    Google Scholar 

  • Thorpe, T.A.; Stasolla, C. Somatic embryogenesis. In: Bhojwani, S.S.; Soh, W.Y.; eds. Current trends in the embryology of angiosperms. Dordrecht: Kluwer: 279–336; 2001.

    Google Scholar 

  • Walden, R.; Cordeiro, A.; Tiburcio, A.F. Polyamines. Small molecules triggering pathways in plant growth and development. Plant Physiol. 113:1009–1013; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to T.A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Thorpe.

Additional information

Editor: H.E. Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loukanina, N., Thorpe, T.A. Arginine and ornithine decarboxylases in embryogenic and non-embryogenic carrot cell suspensions. In Vitro Cell.Dev.Biol.-Plant 44, 59–64 (2008). https://doi.org/10.1007/s11627-007-9080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9080-3

Keywords

Navigation