In Vitro Cellular & Developmental Biology - Plant

, Volume 37, Issue 6, pp 701–729 | Cite as

In vitro chili pepper biotechnology

Invited Review


Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.

Key words

Capsicum plant regeneration transformation metabolite production capsaicinoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham-Juárez, M. R. “Transformación genética de chile (Capsicum annuum. L.) con genes de quitinasa y β-1,3-glucanasa para la protección contra enfermedades causadas por hongos. Tesis de licenciatura. Instituto de Ciencias Agrícolas, Universidad de Guanajuato, México; 1999.Google Scholar
  2. Agrawal, S.; Chandra, N. Differentiation of multiple shoot buds and plantlets in cultured embryos of Capsicum annuum L. var. Mathania. Curr. Sci. 52:645–646; 1983.Google Scholar
  3. Agrawal, S.; Chandra, N.; Kothari, S. L. Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. Mathania), Plant Cell Tiss. Organ Cult. 16:47–55; 1989.Google Scholar
  4. Alibert, O. Essais de regeneration par organogenes e chez le piment (Capsicum annuum L.). Memoire pour l'obtention du D.E.S.S. de Productivité Végétale Université Paris. Station d'Amélioration des Plantes, Maraîchères-INRA 84141 Montfavet; 1990:37 pp.Google Scholar
  5. Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a 3-oxoacyl-[Acyl-Carrier-Protein] synthase (3-ketoacyl-ACP synthase) gene (Accession No AF085148) from habanero chile. Plant Gene Register PGR98-181. Plant Physiol. 118:1102; 1998a.Google Scholar
  6. Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a probable aminotransferase gene (Accession No AF085149) from habanero chile. Plant Gene Register PGR98-170. Plant Physiol. 118:1102; 1998b.Google Scholar
  7. Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a defensin or gamma-thionin-like gene (Accession No AF128239) from habanero chile. Plant Gene Register PGR99-070. Plant Physiol. 120:633; 1999.Google Scholar
  8. Andrews, J. Peppers: the domesticated Capsicums. new edn. Austin: University of Texas Press; 1995:186 pp.Google Scholar
  9. Arroyo, R.; Revilla, M. A. In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep. 10:414–416; 1991.Google Scholar
  10. Berljak, J. In vitro plant regeneration from pepper (Capsicum annuum L. cv. Soroksari) seedling explants. Phyton (Austria) 39:289–292; 1999.Google Scholar
  11. Binzel, M. L.; Sankhla, N.; Joshi, S.; Sankhla, D. Induction of direct embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Rep. 15:536–540; 1996a.Google Scholar
  12. Binzel, M. L.; Sankhla, N.; Joshi, S.; sankhla, D. In vitro regeneration in chile pepper (Capsicum annuum L.) from ‘half-seed-explants’. Plant Growth Reg. 20:287–293; 1996b.Google Scholar
  13. Brooks, C. J. W.; Watson, D. G.; Freer, I. M. Elicitation of capsidiol accumulation in suspended callus cultures of Capsicum annuum. Phytochemistry 25:1089–1092; 1986.Google Scholar
  14. Buyukalaca, S.; Mavituna, F. Somatic embryogenesis and plant regeneration of pepper in liquid media. Plant Cell Tiss. Organ Cult. 46:227–235; 1996.Google Scholar
  15. Campos, F. F.; Morgan, D. T., Jr. Haploid pepper from a sperm: an androgenic haploid of Capsicum frutescens. J. Hered. 49:134–137; 1958.Google Scholar
  16. Christensen, H. M.; Bamford, R. Haploids in twin seedlings of pepper (Capsicum annuum L.). J. Hered. 34:99–104; 1943.Google Scholar
  17. Christopher, T.; Rajam, M. V. In vitro clonal propagation of Capsicum spp. Plant Cell Tiss. Organ Cult. 38:25–29; 1994.Google Scholar
  18. Christopher, T.; Rajam, M. V. Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant Cell Tiss. Organ Cult. 46:245–250; 1996.Google Scholar
  19. Curry, J.; Aluru, M.; Mendoza, M.; Nevarez, J.; Melendrez, M.; O'Connell, M.A. Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci. 148:47–57; 1999.Google Scholar
  20. Curry, J.; Mendoza, M.; O'Connell, M. A. Nucleotide sequence of a caffeic acid 3-O-methyltransferase gene (Accession No AF081214) from habanero chile. Plant Gene Register PGR98-170. Plant Physiol. 118:711; 1998.Google Scholar
  21. Deruère, J.; Bouvier, F.; Steppuhn, J.; Klein, A.; Camara, B.; Kuntz, M. Structure and expression of two plant genes encoding chromoplastspecific proteins: occurrence of partially spliced transcripts. Biochem. Biophys. Res. Commun. 199:1144–1150; 1994a.PubMedGoogle Scholar
  22. Deruère, J.; Römer, S.; d'Harlingue, A.; Backhaus, R. A.; Kuntz, M.; Camara, B. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133; 1994b.PubMedGoogle Scholar
  23. DeWitt, D.; Bosland, P. W. The pepper garden. Berkeley, CA: Ten Speed Press; 1993:240 pp.Google Scholar
  24. Díaz, I.; Moreno, R.; Power, J. B. Plant regeneration from protoplasts of Capsicum annuum. Plant Cell Rep. 7:210–212; 1988.Google Scholar
  25. Dix, P. J.; Street, H. E. Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. Plant Sci. Lett. 5:231–237; 1975.Google Scholar
  26. Dix, P. J.; Street, H. E. Selection of plant cell lines with enhanced chilling resistance. Ann bot. 40:903–910; 1976.Google Scholar
  27. Dumas de Vaulx, R.; Chambonnet, D.; Pochard, E. Culture in vitro d'anthères de piment (Capsicum annuum): amélioration des taux d'obtention de plantes chez différents génotypes par traitments a +35°C. Agronomie 1:859–864; 1981.Google Scholar
  28. Dumas de Vaulx, R.; Chambonnet, D.; Sibi, M. Stimulation of in vitro androgenesis in pepper (Capsicum annuum) by elevated temperature treatments. In: Earle, D.; Demarly, Y., eds. Variability in plants regenerated from tissue culture. New York: Praeger Publishers; 1982:92–98.Google Scholar
  29. Durand, J. High and reproducible plating efficiencies of protoplasts isolated from in vitro grown haploid Nicotiana sylvestris. Z. Pflanzenphysiol. 93:283–295; 1979.Google Scholar
  30. Ebida, A. I. A.; Hu, C.-Y. In vitro morphogenetic responses and plant regeneration from pepper (Capsicum annuum L. cv. Early California Wonder) seedling explants. Plant Cell Rep. 13:107–110; 1993.Google Scholar
  31. Engler, D. E.; Guri, A. Z.; Lauritis, J. A.; Schloemer, L. M. P. Genetically transformed pepper plants and methods for their production. USA Patent 5,262,316; 1993.Google Scholar
  32. Ezura, H. Micropropagation of Capsicum species (pepper). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 39. Berlin, Heidelberg; Springer-Verlag; 1997:48–59.Google Scholar
  33. Ezura, H.; Nishimiya, S.; Kasumi, M. Efficient regeneration of plants independent of exogenous growth regulators in bell pepper (Capsicum annuum L.). Plant Cell Rep. 12:676–680; 1993.Google Scholar
  34. FAO. FAOSTAT Database results; 1998.Google Scholar
  35. Fári, M. Pepper (Capsicum annuum L.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 2. Berlin, Heidelberg: Springer-Verlag; 1986:345–362.Google Scholar
  36. Fári, M.; Czakó, M. Relationship between position and morphogenetic response of pepper hypocotyl explants cultured in vitro. Sci. Hort. 15:207–213; 1981.Google Scholar
  37. Fári, M.; Szász, A.; Mitykó, J.; Nagy, I.; Csányi, M.; Andrásfalvy, A. Induced organogenesis via seedling decapitation method(SDM) in three solanaceous vegetable species. VIIIth Eucarpia Meeting Genetics and Breeding of Capsicum and Eggplant, Rome, 7–10 September; 1992:243–248.Google Scholar
  38. Fontes, M. A.; Otoni, W. C.; Carolino, S. M. B.; Brommonschenkel, S. H.; Fontes, E. P. B.; Fári, M.; Louro, R. P. Hyperhydricity in pepper plants regnerated in vitro: involvement of BiP (Binding Protein) and ultrastructural aspects. Plant Cell Rep. 19:81–87; 1999.Google Scholar
  39. Franck-Duchenne, M.; Wang, Y.; Ben Tahar, S.; Beachy, R. N. In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell Tiss. Organ Cult. 53:79–84; 1998.Google Scholar
  40. Fujiwake, H.; Suzuki, T.; Iwai, K. Capsaicinoid formation in the protoplast from the placenta of Capsicum fruits. Agric. Biol. Chem. 46:2591–2592; 1982.Google Scholar
  41. Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.PubMedGoogle Scholar
  42. García-Pérez, M. D.; Egea, C.; Candela, M. E. Defence response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiol. Plant. 103:527–533; 1998.Google Scholar
  43. Gémesné, J. A.; Sági, Zs.; Salamon, P.; Somogyi, N.; Zatykó, L., Venczel, G. Experiences and results of in vitro haploid methods application in pepper breeding programme. Xth Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, 7–11 September; 1998:201–205.Google Scholar
  44. George, L.; Narayanaswamy, S. Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470; 1973.Google Scholar
  45. González-Melendi, P.; Testillano, P. S.; Ahmadian, P.; Fadón, B.; Risueño, M. C. New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. Eur. J. Cell Biol. 69:373–386; 1996.PubMedGoogle Scholar
  46. Govindarajan, V. S. Capsicum—production, technology, chemistry and quality. III. Chemistry of the color, aroma, and pungency stimuli. Crit. Rev. Food Sci. Nutr. 24:245–355; 1986.PubMedGoogle Scholar
  47. Govindarajan, V. S.; Sathyanarayana, M. N. Capsicum—production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit. Rev. Food Sci. Nutr. 29:435–474; 1991.PubMedGoogle Scholar
  48. Greenleaf, W. H. Pepper breeding. In: Bassett, M. J., ed. Breeding vegetable crops. Westport, CT: AVI Publishing; 1986:67–134.Google Scholar
  49. Gunay, A. L.; Rao, P. S. In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Sci. Lett. 11:365–372; 1978.Google Scholar
  50. Gyulai, G.; Gémesné, J. A.; Sági, Zs.; Venczel, G.; Pintér, P.; Kristóf, Z.; Törjék, O.; Heszky, L.; Bottka, S.; Kiss, J.; Zatykó, L. Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J. Plant Physiol. 156:168–174; 2000.Google Scholar
  51. Hall, R. D.; Holden, M. A.; Yeoman, M. M. The accumulation of phenylpropanoid and capsaicin compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens Mill. Plant Cell Tiss. Organ Cult. 8:163–176; 1987.Google Scholar
  52. Hall, R. D.; Yeoman, M. M. The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of chilli pepper, Capsicum frutescens. Planta 185:72–80; 1991.Google Scholar
  53. Harini, I.; Lakshmi Sita, G. Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.). Plant Sci. 89:107–112; 1993.Google Scholar
  54. Holden, M. A.; Hall, R. D.; Lindsey, K.; Yeoman, M. M. Capsaicin biosynthesis in cell cultures of Capsicum frutescens. In: Webb, C.; Mavituna, F., eds. Plant and animal cells: process possibilities. Chichester: Horwood Ltd.; 1987:45–62.Google Scholar
  55. Holden, P. R.; Yeoman, M. M. Variation in the growth and biosynthetic activity of cloned cell cultures of Capsicum frutescens and their response to an exogenously supplied elicitor. Plant Cell Tiss. Organ Cult. 38:31–37; 1994.Google Scholar
  56. Hoshino, T.; Chida, M.; Yamaura, T.; Yoshizawa, Y.; Mizutani, J. Phytoalexin induction in green pepper cell cultures treated with arachidonic acid. Phytochemistry 36:1417–1419; 1994.Google Scholar
  57. Houlné, G.; Meyer, B.; Schantz, R. Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.). Mol. Gen. Genet. 259:504–510; 1998.PubMedGoogle Scholar
  58. Husain, S.; Jain, A.; Kothari, S. L. Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant. Cell Rep. 19:64–68; 1999.Google Scholar
  59. Hyde, C.; Phillips, G. C. Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev. Biol. Plant 32:72–80; 1996.Google Scholar
  60. Jayashankar, S. Comparison of different in vitro regeneration and genetic transformation strategies for chile pepper (Capsicum annuum). Ph.D. dissertation, New Mexico State University, Las Cruces: 1998.Google Scholar
  61. Jayashankar, S.; Bagga, S.; Phillips, G. C. Sweet pepper (Capsicum annuum) transformation using Agrobacterium rhizogenes. HortScience 32:454 (abstr.); 1997.Google Scholar
  62. Kao, K. N.; Michayluk, M. R. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at very low population density in liquid media. Planta 126:105–110; 1975.Google Scholar
  63. Kim, S. J.; Lee, S. J.; Kim, B.-D.; Paek, K.-H. Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep. 16:825–830; 1997.Google Scholar
  64. Kristiansen, K.; Andersen, S. B. Effects of donor plant temperature, photoperiod, and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109; 1993.Google Scholar
  65. Kuntz, M.; Chen, H. C.; Simkin, A. J.; Römer, S.; Shipton, C. A.; Drake, R.; Schuch, W.; Bramley, P. M. Upregulation of two ripening-related genes from a non-climacteric plant (pepper) in a transgenic climacteric plant (tomato). Plant J. 13:351–361; 1998.Google Scholar
  66. Kuo, J.-S.; Wang, Y.-Y.; Chien, N.-F.; Ku, S.-J.; Kung, M.-L.; Hsu, H.-C. Investigation on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot. Sinica 15:43–47; 1973.Google Scholar
  67. Lee, S. J.; Kim, B.-D.; Paek, K.-H. In vitro plant regeneration and Agrobacterium-mediated transformation from cotyledon explants of hot pepper (Capsicum annuum cv. Golden Tower). Korean J. Plant Tiss. Cult. 20:289–294; 1993.Google Scholar
  68. Lefebvre, V.; Palloix, A.; Caranta, C.; Pochard, E. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121; 1995.Google Scholar
  69. Lindsey, K. Manipulation, by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. cv. annuum. Planta 165:126–133; 1985.Google Scholar
  70. Lindsey, K. Incorporation of [14C]phenylalanine and [14C]cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. Phytochemistry 25:2793–2801; 1986.Google Scholar
  71. Lindsey, K.; Yeoman, M. M. The viability and biosynthetic activity of cells of Capsicum frutescens Mill. cv. annuum immobilised in reticulate polyurethane. J. Exp. Bot. 35:1684–1696; 1984a.Google Scholar
  72. Lindsey, K.; Yeoman, M. M. The synthetic potential of immobilised cells of Capsicum frutescens Mill. cv. annuum. Planta 162:495–501; 1984b.Google Scholar
  73. Lindsey, K.; Yeoman, M. M.; Black, G. M.; Mavituna, F. A novel method for the immobilisation and culture of plant cells. FEBS Lett. 155:143–149; 1983.Google Scholar
  74. Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100–127; 1965.Google Scholar
  75. Liu, W.; Parrott, W. A.; Hildebrand, D. F.; Collins, G. B.; Williams, E. G. Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep. 9:360–364; 1990.Google Scholar
  76. Madhuri, V.; Rajam, M. V. Apical shoot meristem culture in red pepper (Capsicum annuum L.). J. Plant Biochem. Biotechnol. 2:67–68; 1993.Google Scholar
  77. Maga, J. A. Capsicum. Crit. Rev. Food Sci. Nutr. 6:177–199; 1975.Google Scholar
  78. Manoharan, M.; Sree Vidya, C. S.; Lakshmi Sita, G. Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuuum L. var. Pusa jwala). Plant Sci. 131:77–83; 1998.Google Scholar
  79. Mavituna, F.; Park, J. M. Growth of immobilised plant cells in reticulate polyurethane foam matrices. Biotechnol. Lett. 7:637–640; 1985.Google Scholar
  80. Mavituna, F.; Park, J. M.; Wilkinson, A. K.; Williams, P. D. Characteristics of immobilised plant cell reactors. In: Webb, C.; Mavituna, F., eds. Plant and animal cells: process possibilities. Chichester: Horwood Ltd.; 1987:92–115.Google Scholar
  81. Meyer, B.; Houlné, G.; Pozueta-Romero, J.; Schantz, M.-L.; Schantz, R. Fruit-specific expression of a defensin-type gene family in bell pepper. Plant. Physiol. 115:1185–1194; 1997.Google Scholar
  82. Mitykó, J.; Andrásfalvy, A.; Csilléry, G.; Fári, M. Anther-culture response in different genotypes and F1 hybrids of pepper (Capsicum annuum L.). Plant Breed. 114:78–80; 1995.Google Scholar
  83. Morrison, R. A.; Koning, R. E.; Evans, D. A. Pepper. In: Evans, D. A.; Sharp, W. R.; Ammirato, P. V., eds Handbook of plant cell culture, vol. 4. New York: Macmillan; 1986a:552–573.Google Scholar
  84. Morrison, R. A.; Koning, R. E.; Evans, D. A. Anther culture of an interspecific hybrid of Capsicum. J. Plant Physiol. 126:1–9; 1986b.Google Scholar
  85. Munyon, I. P.; Hubstenberger, J. F.; Phillips, G. C. Origin of plantlets and callus obtained from chile pepper anther cultures. In Vitro Cell. Dev. Biol. 25:293–296; 1989.Google Scholar
  86. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.Google Scholar
  87. Murphy, J. F.; Kyle, M. M. Isolation and viral infection of Capsicum leaf protoplasts. Plant Cell Rep. 13:397–400; 1994.Google Scholar
  88. Nagata, T.; Takebe, I. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20; 1971.Google Scholar
  89. Nielsen, T. H.; Ulvskov, P. Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). II. Sink metabolism in relation to cytokinin-promoted leaf expansion. Planta 188:78–84; 1992.Google Scholar
  90. Nitsch, J. P. Experimental androgenesis in Nicotiana. Phytomorphology 19:389–404; 1969.Google Scholar
  91. Novák, F. J. Induction of a haploid callus in anther cultures of Capsicum sp. Z. Pflanzenzüchtg. 72:46–54; 1974.Google Scholar
  92. Ochoa-Alejo, N.; García-Bautista, M. A. R. Morphogenetic responses in vitro of hypocotyl tissues of chili pepper (Capsicum annuum L.) to growth regulators. Turrialba 40:311–318; 1990.Google Scholar
  93. Ochoa-Alejo, N.; Gómez-Peralta, J. E. Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J. Plant Physiol. 141:147–152; 1993.Google Scholar
  94. Ochoa-Alejo, N.; Ireta-Moreno, L. Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci. Hort. 42:21–28; 1990.Google Scholar
  95. Ochoa-Alejo, N.; Salgado-Garciglia, R. Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and-sensitive variant cells of chili pepper (Capsicum annuum). Physiol. Plant. 85:173–179; 1992.Google Scholar
  96. Phillips, G. C.; Collins, G. B. In vitro culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci. 19:59–64; 1979.Google Scholar
  97. Phillips, G. C.; Hubstenberger, J. F. Organogenesis in pepper tissue cultures. Plant Cell Tiss. Organ Cult. 4:261–269; 1985.Google Scholar
  98. Phillips, G. C.; Valera-Montero, L. L.; Fan, Z.; Jayashankar, S.; Hubstenberger, J. F.; Watkins, D. D. Chile improvement through biotechnology: in vitro plant regeneration and genetic transformation. New Mexico Chile Pepper Insitute, Chile Conference 2000 (Poster), Las Cruces, NM; February 8; 2000.Google Scholar
  99. Pickering, R. A.; Devaux, P. Haploid production: approaches and use in plant breeding. In: Shewry, P. R., ed. Barley: genetics, biochemistry, molecular biology and biotechnology. Oxford: Alden Press; 1992:519–547.Google Scholar
  100. Pochard, E.; Dumas de Vaulx, R. Haploid parthenogenesis in Capsicum annuum L.. In: Hawkes, J. G.; Lester, R. N.; Skelding, A. D., eds. The biology and taxonomy of the Solanaceae. London: Academic Press; 1979:455–472.Google Scholar
  101. Power, J. B.; Chapman, J. V. Isolation, culture and genetic manipulation of plant protoplasts. In: Dixon, R. A., ed. Plant cell culture. Oxford, Washington DC: IRL Press; 1985;37–66.Google Scholar
  102. Prakash, A. H.; Sankara Rao, K.; Udaya Kumar, M. Plant regeneration from protoplasts of Capsicum annuum L. cv. California Wonder. J. Biosci. 22:339–344; 1997.Google Scholar
  103. Quintero-Higuera, M. F.; Santos-Díaz, M. S.; García-de la Cruz, R. F. Cell wall proteins of in vitro cultured chili pepper lines differing in water stress tolerance. Plant Sci. 128:217–223; 1997.Google Scholar
  104. Ramachandra Rao, S.; Ravishankar, G. A. Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of Capsicum frutescens: study of the influence of β-cyclodextrin and fungal elicitor. Process Biochem. 35:341–348; 1999.Google Scholar
  105. Ramachandra Rao, S.; Ravishankar, G. A. Biotransformation of proto-catechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. J. Biotechnol. 76:137–146; 2000.Google Scholar
  106. Ramage, C. M.; Leung, D. W. M. Influence of BA and sucrose on the competence and determination of pepper (Capsicum annuum L. var. Sweeet Banana) hypocotyl cultures during shoot formation. Plant Cell Rep. 15:974–979; 1996.Google Scholar
  107. Ramírez-Malagón, R. Estudios de regeneración de plantas in vitro y de transformación genética de chile (Capsicum annuum L.). Ph.D. thesis, CINVESTAV-Unidad Irapuato, México: 1997.Google Scholar
  108. Ramírez-Malagón, R.; Ochoa-Alejo, N. An improved and reliable chili pepper (Capsicum annuum L.) plant regeneration method. Plant Cell Rep. 16:226–231; 1996.Google Scholar
  109. Rao, A. V.; Ashfaq Farooqui, M.; Sadanandam, A. Induction of lincomycin and streptomycin resistance by nitrosomethylurea and ethyl methanesulphonate in Capsicum annuum L.. Plant Cell Rep. 16:865–868; 1997.Google Scholar
  110. Ravishankar, G. A.; Sarma, K. S.; Venkataraman, L. V.; Kadyan, A. K. Effect of nutritional stress on capsaicin production in immobilized cell cultures of Capsicum annuum. Curr. Sci. 57:381–383; 1988.Google Scholar
  111. Saccardo, F.; Devreux, M. In vitro production of plantlets from anther culture of Capsicum annuum. Proc. Eucarpia: Genetics and Breeding of Capsicum. Budapest; 1974:45–49.Google Scholar
  112. Salgado-Garciglia, R.; Ochoa-Alejo, N. Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep. 8:617–620; 1990.Google Scholar
  113. Santos-Díaz, M. S.; Ochoa-Alejo, N. PEG-tolerant cell clones of chili pepper: growth, osmotic potentials and solute accumulation. Plant Cell Tiss. Organ Cult. 37:1–8; 1994a.Google Scholar
  114. Santos-Díaz, M. S.; Ochoa-Alejo, N. Effect of water stress on growth, osmotic potential and solute accumulation in cell cultures from chili pepper (a mesophyte) and creosote bush (a xerophyte). Plant Sci. 96:21–29; 1994b.Google Scholar
  115. Saxena, P. K.; Gill, R.; Maheshwari, S. C. Isolation and culture of protoplasts of Capsicum annuum L. and their regeneration into plants flowering in vitro. Protoplasma 108:357–360; 1981.Google Scholar
  116. Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:166–204; 1972.Google Scholar
  117. Shahin, E. A. Totipotency of tomato protoplasts. Theor. Appl. Genet. 69:235–240; 1985.Google Scholar
  118. Sibi, M.; Dumas de Vaulx, R.; Chambonnet, D. Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann. Amélior. Plantes 29:583–606; 1979.Google Scholar
  119. Sripichit, P.; Nawata, E.; Shigenaga, S. In vitro shoot-forming capacity of cotyledon explants in red pepper (Capsicum annuum L. cv. Yatsufusa). Jap. J. Breed. 37:133–142; 1987.Google Scholar
  120. Sripichit, P.; Nawata, E.; Shigenaga, S. The effects of exposure dose and dose rate of gamma radiation on in vitro shoot-forming capacity of cotyledon explants of red pepper (Capsicum annuum L. cv. Yatsufusa). Jap. J. Breed. 38:27–34; 1988a.Google Scholar
  121. Sripichit, P.; Nawata, E.; Shigenaga, S. Radiation-induced mutation by using in vitro adventitious bud technique in red pepper (Capsicum annuum L. cv. Yatsufusa)—analysis of the variant appeared in M1 generation. Jap. J. Breed. 38:141–150; 1988b.Google Scholar
  122. Subhash, K.; Venkataiah, P.; Bhaskar, P. Induction of streptomycin-resistant plantlets in Capsicum annuum L. through mutagenesis in vitro. Plant Cell Rep. 16:111–113; 1996.Google Scholar
  123. Sudhakar Johnson, T.; Ravishankar, G. A.; Dhanaraj, S. Pungency threshold of capsaicin produced by in vitro culture of placental tissues of Capsicum frutescens. Mill. Food Biotechnol. 9:167–173; 1995.Google Scholar
  124. Sudhakar Johnson, T.; Ravishankar, G. A.; Venkataraman, L. V. In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci. 70:223–229; 1990.Google Scholar
  125. Sudhakar Johnson, T.; Ravishankar, G. A.; Venkataraman, L. V. Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant Cell. Tiss. Organ Cult. 44:117–121; 1996.Google Scholar
  126. Suzuki, T.; Kawada, T.; Iwai, K. Biosynthesis of acyl moieties of capsaicin and its analogues from valine and leucine in Capsicum fruits. Plant Cell. Physiol. 22:23–32; 1981.Google Scholar
  127. Szász, A.; Nervo, G.; Fári, M. Screening for in vitro shoot-forming capacity of seedling explants in bell pepper (Capsicum annuum L.) genotypes and efficient regeneration using thidiazuron. Plant Cell Rep. 14:666–669; 1995.Google Scholar
  128. Tisserat, B.; Galletta, P. D. In vitro flowering and fruiting of Capsicum frutescens L. HortScience 30:130–132; 1995.Google Scholar
  129. Ulvskov, P.; Nielsen, T. H.; Seiden, P.; Marcussen, J. Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). I. Spatial distribution of endogenous cytokinins in relation to leaf growth. Planta 188:70–77; 1992.Google Scholar
  130. Vagera, J. Pepper (Capsicum spp.): in vitro induction of haploids. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 12. Berlin, Heidelberg, New York: Springer; 1990:374–392.Google Scholar
  131. Vagera, J.; Havránek, P. In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspects. Biol. Plant. 27:10–21; 1985.Google Scholar
  132. Valera-Montero, L. L.; Ochoa-Alejo, N. A novel approach for chili pepper (Capsicum annuum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci. 84:215–219; 1992.Google Scholar
  133. Verástegui-Peña, Y. M. Expresión diferencial de mRNAs de células de chile (Capsicum annuum L.) tolerantes a polietilenglicol (PEG). Tesis de maestría. CINVESTAV-Unidad Irapuato, México; 1999.Google Scholar
  134. Wang, Y.-Y.; Kuo, C.-S.; Li, C.-L.; Chiang, C.-R. A preliminary report on the study of pollen plants of sweet peppers (Capsicum annuum L. var. grossum Bell). Proc. Symposium on Plant Tissue Culture, Boston, London, Melbourne: Pitman Advanced Publishing Program; 1981:243.Google Scholar
  135. Wang, Y.-Y.; Sun, C.-S.; Wang, C.-C.; Chien, N.-F. The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci. Sinica 16:147–151; 1973.Google Scholar
  136. Weathers, P. J.; Mohd Fadzillah, N. A.; Cheetham, R. D. Light inhibits the formation of capsaicin from Capsicum callus. Planta Med. 58:278–279; 1992.PubMedGoogle Scholar
  137. Williams, P. D.; Wilkinson, A. K.; Lewis, J. A.; Black, G. M.; Mavituna, F. A method for the rapid production of fine plant cell suspension cultures. Plant Cell Rep. 7:459–462; 1988.Google Scholar
  138. Withers, L. A.; Street, H. E. Freeze preservation of cultured plant cells. III. The pregrowth phase. Physiol. Plant. 39:171–178; 1977.Google Scholar
  139. Zhu, Y.-X.; Ou-Yang, W.-J.; Zhang, Y.-F.; Chen, Z.-L. Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep. 16:71–75; 1996.Google Scholar

Copyright information

© Scoeity for In Vitro Biology 2001

Authors and Affiliations

  1. 1.Departmento de Ingeniería Genética de PlantasUnidad de Biotecnología e Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-Unidad Irapuato)IrapuatoMéxico
  2. 2.Instituto de Ciencias AgrícolasUniversidad de GuanajuatoIrapuatoMéxico

Personalised recommendations