Skip to main content

Application of bioreactors for large-scale micropropagation systems of plants

Summary

The application of bioreactor culture techniques for plant micropropagation is regarded as one of the ways to reduce production cost by scaling-up and automation. Recent experiments are restricted to a small number of species that, however, demonstrate the feasibility of this technology. Periodic immersion liquid culture using ebb and flood system and column-type bubble bioreactors equipped with a raft support system to maintain plant tissues at the air and liquid interface were found to be suitable for micropropagation of plants via the organogenic pathway. Balloon-type bubble bioreactors proved to be fit for micropropagation via somatic embryogenesis with less shear stress on cultured cells. Several cultivars of Lilium were successfully propagated using a two-stage culture method in one bioreactor. A large number of small-scale segments were cultured for 4 wk with periodic immersion liquid culture to induce multiple bulblets from each segment, then the bulblet induction medium was changed into bulblet growth medium by employing a submerged liquid bioreactor system. This culture method resulted in a nearly 10-fold increase in bulblet growth compared to conventional culture with solid medium. About 20 000 cuttings of virus-free potato could be obtained from 120 singlenode explants in a 20-liter balloon-type bubble bioreactor after 8 wk of culture. The percentage of ex vitro survival and root induction of the cuttings was more than 95%. Other successful results were obtained from the micropropagation and transplant production of chrysanthemum, sweetpotato, Chinese foxglove. Propagation systems via somatic embryogenesis in Acanthopanax koreanum and thornless Aralia elata were established using a liquid suspension of embryogenic determined cells. More than 500 000 somatic embryos in different stages were harvested from a 10-liter balloon-type bubble bioreactor after a 6-wk culture. Further development of these embryos in solid medium and eventually in the field was successful. The bioreactor system could reduce initial and operational cost for micropropagation, but further development of sophisticated technology might be needed to apply this system to plant micropropagation industries.

This is a preview of subscription content, access via your institution.

References

  • Aitken-Christie, J., Automation. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991:342–354.

    Google Scholar 

  • Akita, M.; Takayama, S. Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep. 13:184–187; 1994.

    CAS  Google Scholar 

  • Armstrong, C. L.; Phillips, R. L. Genetic and cytogenetic variation in plants regenerated from organogenic and friable, embryogenic tissue cultures of maize. Crop Sci. 28:363–369; 1988.

    Article  Google Scholar 

  • Azechi, S.; Hashimoto, T.; Murata, A.; Miyakita, I.; Ishii, H. Dynamic measurement of volumetric oxygen transfer coefficient. Jpn Tobacco Cult. Pulb. Crop. 20:73–85; 1985.

    Google Scholar 

  • Azechi, S.; Hashimoto, T.; Yuyama, T.; Nagatuska, S.; Nakashizuka, M.; Nishiyama, T.; Murata, A. Continuous cultivation of tobacco plant cells in an industrial scale plant. Hakkokogaku 61:117–128; 1983.

    CAS  Google Scholar 

  • Drew, M. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev. Plant Physiol. Plant Mol. Biol. 48:233–250; 1997.

    Article  Google Scholar 

  • Dunstan, D. I.; Tautorus, T. E.; Thorpe, T. A. Somatic embryogenesis in woody plants. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995:471–538.

    Google Scholar 

  • Etienne-Barry, D.; Etienne, H. Direct sowing of temporary immersion produced somatic embryos. Agricell Rep. 34:17–18; 2000.

    Google Scholar 

  • Fowler, M. W.; Bond, P.; Scragg, A. H. Developments in plant cell culture technology. In: Chmiel, H.; Hammes, W. P.; Bailey, J. E., eds. Biochemical engineering. New York: Gustav Fischer; 1987:333–341.

    Google Scholar 

  • Fujita, Y.; Tabata, M.; Nishi, A.; Yamada, Y., New medium and production of secondary compounds with the two-staged culture method. In: Fujiwara, A., ed. Plant tissue culture. Tokyo: Maruzen; 1982:399–400.

    Google Scholar 

  • Gupta, P. K.; Durzan, D. J. Shoot multiplication from mature trees of Douglas-fir (Pseuosuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4:177–179; 1985.

    Article  CAS  Google Scholar 

  • Gupta, P. K.; Durzan, D. J. Somatic polyembryogenesis from callus of mature sugar pine embryo. Bio/Technology 4:643–648; 1986.

    Article  Google Scholar 

  • Hegarty, P. K.; Smart, N. J.; Scragg, A. H.; Fowler, M. W. The aeration of Catharanthus roseus L.G. Suspension cultures in airlift bioreactors: the inhibitory effect at high aeration rates on culture growth. J. Exp. Bot. 37:1911–1920; 1986.

    Article  CAS  Google Scholar 

  • Heyerdahl, P. H.; Olsen, O. A. S.; Hvoslef-Eide A. K. Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie, J.; Kozai, T.; Smith, M. L., eds. Automation and environmental control in plant tissue culture. Dordrecht: Kluwer Academic Publishers; 1995:87–123.

    Google Scholar 

  • Hooker, B. S.; Lee, J. M. Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnol. Bioeng. 35:296–304; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. B.; Sluis, C. J. Marketing of micropropagated plants. In: Debergh, P. C.; Zimmerman, R. H., eds., Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991:141–154.

    Google Scholar 

  • Kozai, T. Photoautotrophic micropropagation. In Vitro Cell Dev. Biol. Plant 27:47–51; 1991.

    Google Scholar 

  • Leathers, R. R.; Smith, M. A. L.; Aitken-Christie, J. Automation of the bioreactor process for mass propagation and secondary metabolism. In: Aiken-Christie, J.; Kozai, T.; Smith, M. A. L. eds. Automation and environmental control in plant tissue culture. Dordrecht: Kluwer Academic Publishers; 1995:187–214.

    Google Scholar 

  • Lee, J. S. Micropropagation of Phalaenopsis by flower stalk-derived axillary bud culture. M. Sc. thesis, Chungbuk National University, Korea; 1999.

    Google Scholar 

  • Lee, Y. H. Design of bioreactor system for small and pilot-scale cultivation of plant cells. M.Sc. thesis, Chungbuk National University, Korea; 1997.

    Google Scholar 

  • Levin, R.; Gaba, V.; Tal, B.; Hirsch, S.; De Nola, D.; Vasil, I. K. Automated tissue culture for mass propagation. Bio/Technology 6:1035–1040; 1988.

    Article  Google Scholar 

  • Levin, R.; Vasil, I. K. An integrated and automated tissue culture system for mass propagation of plants. In Vitro Cell. Dev. Biol. Plant 25:21–27; 1989.

    Google Scholar 

  • Lim, S.; Seon, J. H.; Paek, K. Y.; Son, S. H.; Han, B. H. Development of pilot soale process for mass production of Lilium bulblets in vitro. Acta Hort. 461:237–241; 1998.

    Google Scholar 

  • Merkle, S. A.; Parrott, W. A.; Flinn, B. S. Morphogenic aspects of somatic embryogenesis In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995:155–203.

    Google Scholar 

  • Paek, K. Y.; Hahn, E. J. Variations in African violet ‘Crimson Frost’ micropropagated by homogenized leaf tissue culture. HortTechnology 9:625–628; 1999.

    Google Scholar 

  • Preil, W. Application of bioreactors in plant propagation. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991:425–445.

    Google Scholar 

  • Preil, W.; Florek, P.; Wix, U.; Beck, A. Towards mass propagation by use of bioreactors. Acta Hort. 226:99–105; 1988.

    Google Scholar 

  • Rittershaus, E.; Ulrich, J.; Weiss, A.; Westphal, K. Large scale industrial fermentation of plant cells: experiences in cultivation of plant cells in a fermentation cascade up to a volume of 75,000L. BioEngineering 5:28–34; 1989.

    Google Scholar 

  • Schiigerl, K.; Sittig, W., Bioreactors. In: Preile, P.; Faust, U.; Sittig, W.; Sukatsch, D. A., eds. Basic biotechnology. Weinheim: VCH Verlagsgesellschaft; 1987:179–224.

    Google Scholar 

  • Seon, J. H.; Kim, Y. S.; Son, S. H.; Paek, K. Y. The fed-batch culture system using bioreactor for the bulblet production of oriental lilies. Acta Hort. 520:53–59; 2000.

    CAS  Google Scholar 

  • Seon, J. H.; Yoo, K. W.; Cui, Y. Y.; Kim, M. H.; Lee, S. S.; Son, S. H.; Paek, K. Y. Application of bioreactor for the production of saponin by adventitious root cultures in Panax ginseng. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century. Dordrecht: Kluwer Academic Publishers; 1998:329–332.

    Google Scholar 

  • Son, S. H.; Choi, S. M.; Choi, K. B.; Lee, Y. H.; Lee, D. S.; Choi, M. S.; Park, Y. G. Selection and proliferation of rapid growing cell lines from embryo derived cell cultures of yew tree (Taxus cuspidata Sieb. et Zucc). Biotechnol. Bioprocess Engng 4:112–118; 1999a.

    CAS  Google Scholar 

  • Son, S. H.; Choi S. M.; Kwon, S. R.; Lee, Y. H.; Paek, K. Y. Large-scale culture of plant cell and tissue by bioreactor system. J. Plant Biotechnol. 1:1–8; 1999b.

    Google Scholar 

  • Son, S. H.; Choi, S. M.; Lee, D. S.; Yun, S. R.; Paek, K. Y. Commercial application of mountain ginseng through bioreactor culture system. In: Paek, K. Y., ed. Korea-Japan joint symposium on transplant production in horticultural plants. Res. Center for the Development of Advanced Horticultural Technology, Chungbuk National University, Korea; 1999c:9–14.

    Google Scholar 

  • Stasolla, C.; Yeung, E. C. Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell. Dev. Biol. Plant 35:316–319; 1999.

    CAS  Google Scholar 

  • Takahashi, S.; Matsubara, H.; Yamagata, H.; Morimoto, T. Micropropagation of virus free bulblets of Lilium longiflorum by tank culture. I. Development of liquid culture method and large scale propagation. Acta Hort. 319:83–88; 1992.

    Google Scholar 

  • Vasil, I. K. Rationade for the scale-up and automation of plant propagation. In: Vasil, I. K., ed. Scale-up and automation in plant propagation. Cell culture and somatic cell genetics of plants, vol. 8. San Diego: Academic Press; 1991:1–12.

    Google Scholar 

  • Watad, A. A.; Alper, Y.; Stav, R.; Levin, R. Mechanization of micropropagation. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century Dordrecht: Kluwer Academic Publishers; 1999:663–666.

    Google Scholar 

  • Weathers, P. J.; Wyslowzil, B. E.; Wobbe, K. K.; Kim, Y. J.; Yigit, E. The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cell. Dev. Biol. Plant. 1999:286–299.

  • Ziv, M. Organogenic plant regeneration in bioreactors. In: Altman, A.; Ziv, M.; Izhar, S., eds., Plant biotechnology and in vitro biology in the 21st century. Dordrecht: Kluwer Academic Publishers; 1999:673–676.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Yoeup Paek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paek, KY., Hahn, EJ. & Son, SH. Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell.Dev.Biol.-Plant 37, 149–157 (2001). https://doi.org/10.1007/s11627-001-0027-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0027-9

Key words

  • bioreactor
  • Lilium
  • potato
  • somatic embryogenesis