Somatic embryogenesis from embryogenic cell suspension cultures of california poppy, Eschscholzia californica Cham

  • Sang-Un Park
  • Peter J. FacchiniEmail author


A somatic embryogenesis protocol was developed for Eschscholzia californica Chan. (California poppy) using embryogenic cell suspensions and optimized media conditions. Rapidly-growing, finely-dispersed embryogenic cell suspension cultures were established from embryogenic callus and maintained in B5 liquid media supplemented with 0.5 mg 1−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid. Culture conditions were optimized by investigating the effect of basal media composition, gyratory shaker speed, various carbon sources, different cytokinins, and AgNO3 on the efficiency of somatic embryogenesis. After 40 d in culture, the somatic embryos that formed were counted and their overall growth expressed as pecked cell volume. The selected media consisted of either Gamborg (B5) or Murashige and Skoog (MS) salts and vitamins supplemented with 40 g 1−1 (117 mM) sucrose, 0.05 mg 1−1 (0.22 μM) 6-benzylaminopurine, and 10 mg l−1 (58.8 μM) AgNO3. Somatic embryo production was substantially reduced at shaker speeds above 40 rpm. Glucose and snerose were the most effective carbon sources, whereas fructose, galactose, and maltose resulted in a reduced yield and growth of somatic embryos. The development of somatic embryos was promoted by AgNO3 at concentrations below 10 mg l−1 (58.8 μM). A semi-solid medium containing 1.5 g l−1 Gel-rite produced the highest frequency of somatic embryo conversion, and promoted the efficient growth of plantlets. Using the reported protocol, over 500 viable somatic embryos were produced per 25 ml of embryogenic cell suspension culture.

Key words

cytokinins carbon source embryogenesis gelling agent media optimization plan regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archambault, J.; Williams, R. D.; Lavoic, L.; Pepin, M. F.; Chavarie, C. Production of somatic embryos in helical-ribbon-impeller bioreactor. Biotechnol. Bioengineer. 44:930–943; 1994.CrossRefGoogle Scholar
  2. Gamborg, O. L.; Miller, R. O.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.PubMedCrossRefGoogle Scholar
  3. Gundlach, H.; Mueller, M. J.; Kutchan, T. M.; Zenk, M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl Acad. Sci. USA 89:2389–2393; 1992.PubMedCrossRefGoogle Scholar
  4. Kavathekar, A. K.; Gamapathy, P. S. Embryoid differentiation in Eschscholzia californica. Curr. Sci. 42:671–673; 1973Google Scholar
  5. Kavathekar, A. K.; Ganapathy, P. S.; Johri, B. M. Chilling induces development of embryoids into plantlets in Eschscholzia. Z. Pflanzenphysiol. 81:358–363; 1977.Google Scholar
  6. Kutchan, T. M.. Molecular genetics of plant alkaloid biosynthesis. In: Cordell, G., ed The Alkaloids, Vol. 50. San Diego: Academic Press; 1998:257–316Google Scholar
  7. Merkle, S. A.; Parrott, W. A.; Flinn, B. S.. Morphgenic aspects of somatic embryogenesis, In: Thorpe, T. A., ed In vitro embryogenesis in plants, Dordrecht: Kluwer; 1995:174–175.Google Scholar
  8. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tisue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  9. Park, S. U.; Facchini, P. J. High-efficiency somatic embryogenesis and plant regeneration in California poppy. Eschscholzia californica Cham. Plant Cell Rep. 19:421–426; 2000CrossRefGoogle Scholar
  10. Purnhauser, L.; Medgyesy, P.; Czako, M.; Dix, P. J.; Marton, L. Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv, tisue cultures using the ethylene inhibitor AgNO3. Plant Cell Rep. 6:1–4; 1987.CrossRefGoogle Scholar
  11. Reidiboym-Talleux, L; Diemer, F.; Sourdioux, M.; Chapelain, K.; Grenier-de March, G.. Improvement of soamtic embryogenesis in wild cherry (Prunus avium). Effect of maltose and ABA supplements. Plant Cell Tiss. Organ Cult. 55:199–209; 1999.CrossRefGoogle Scholar
  12. Roustan, J. P.; Latche, A.; Fallot, J. Control of carrot somatic embryogenesis by AgNo3, and inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci. 67:89–95; 1990.CrossRefGoogle Scholar
  13. Schumacher, H.-M.; Gundlach, H.; Fiedler, F.; Zenk, M. H. Elicitation of benzophenanthridine alkaloid synthesis in Eschscholtzia californica cell cultures. Plant Cell Rep 6:410–413; 1987.Google Scholar
  14. Strickland, S. G.; Nichol, J. W.; McCall, C. M.; Stuart, D. A. Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci.. 48:113–121; 1987.CrossRefGoogle Scholar
  15. Tsay, H. S.; Huang, H. L. Somatic embryo formation and gemination from immature embryo-derived suspension-cultured cells of Angelica sinensis (Oliv.) Diels. Plant Cell Rep. 17:670–674; 1998.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations