Soybean cell enlargement oscillates with a temperature-compensated period length of CA. 24 min

  • D. James MorréEmail author
  • Rhea Pogue
  • Dorothy M. Morré


Rate of enlargement of epidermal cells from soybean, when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a period length of about 24 min. This oscillation parallels the 24-min periodicity observed for the oxidation of NADH by the external plasma membrane NADH oxidase. The increase in length was not only non-linear but intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the period was temperature compensated, and was approximately the same when measured at 14, 24 and 34°C even though the rate of cell enlargement varied over this same range of temperatures. These observations represent the first demonstration of an oscillatory growth behavior correlated with a biochemical activity where the period length of both is independent of temperature (temperature compensated) as is the hallmark of clock-related biological phenomena.

Key words

microscopy growth video-microscopy oxidase NADH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bridge, A.; Barr, R.; Morré, D. J. The plasma membrane NADH oxidase of soybean has vitamin K1 hydroquinone oxidase activity. Biochim. Biophys. Acta 1463:448–458; 2000.PubMedCrossRefGoogle Scholar
  2. Chueh, P.-J.; Morré, D. M.; Penel, C.; DeHahn, T.; Morré, D. M. The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH: protein disulfide reductase. J. Biol. Chem. 272:11221–11227; 1997.PubMedCrossRefGoogle Scholar
  3. Claussen, M.; Lüthen, H.; Blatt, M.; Böttger, M. Auxin-induced growth and its linkage to potassium channels. Planta 201:227–234; 1997.CrossRefGoogle Scholar
  4. DeHahn, T.; Barr, R.; Morré, D. J. NADH oxidase activity present on both the external and internal membrane surfaces of soybean membranes. Biochim. Biophys. Acta 1328:99–108; 1997.CrossRefGoogle Scholar
  5. Edmunds, L. N. Cellular and molecular basis of biological clocks. New York: Springer Verlag; 1988.Google Scholar
  6. Gaynor, P.; Kirkpatrick, R. Introduction to time series modeling and forecasting in business and economics. New York: McGraw-Hill; 1994.Google Scholar
  7. Hicks, C.; Morré, D. J. Oxidation of NADH by intact segments of soybean hypocotyls and stimulation by 2,4-D. Biochim. Biophys. Acta 1375:1–5; 1998.PubMedCrossRefGoogle Scholar
  8. Kishi, T.; Morré, D. M.; Morré, D. J. The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity. Biochim. Biophys. Acta 1412:66–77; 1999.PubMedCrossRefGoogle Scholar
  9. Millet, B.; Badot, P. M. The revolving movement mechanism in Phaseolus: new approaches to old questions. In: Greppin, H.; Degli Agosti, R.; Bonzon, M., eds. Vistas on biorhythmicity. Geneva: University of Geneva Press; 1996; 77–98.Google Scholar
  10. Morré, D. J. NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard, H.; Berczi, A.; Caubergs, R., eds. Plasma membrane redox systems and their role in biological stress and disease. Dordrecht, Kluwer Academic Publishers; 1998; 121–156.Google Scholar
  11. Morré, D. J.; Brightman, A. O.; Wu, L.-Y.; Barr, R.; Leak, B.; Crane, F. L. Role of plasma membrane redox activities in elongation growth in plants. Physiol. Plant. 73:187–193; 1988a.Google Scholar
  12. Morré, D. J.; Chueh, P.-J.; Morré, D. M. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc. Natl. Acad. Sci. USA 92:1831–1835; 1995.PubMedCrossRefGoogle Scholar
  13. Morré, D. J.; Crane, F. L.; Barr, R.; Penel, C.; Wu, L.-Y. Inhibition of plasma membrane redox activities and elongation growth of soybean. Physiol. Plant. 72:236–240; 1988b.CrossRefGoogle Scholar
  14. Morré, D. J.; Grieco, P. A. Glaucarubolone and simalikalactone D, respectively, preferentially inhibit auxin-induced and constitutive components of plant cell enlargement and the plasma membrane NADH oxidase. Int. J. Plant Sci. 160:291–297; 1999.CrossRefGoogle Scholar
  15. Morré, D. J.; Luz Gomez-Rey, M.; Schramke, C.; Em, O.; Lawler, J.; Hobeck, J.; Morré, D. M. Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase of soybean plasma membranes. Mol. Cell Biochem. 200:7–13; 1999a.PubMedCrossRefGoogle Scholar
  16. Morré, D. J.; Morré, D. M. NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J. 16:279–284; 1998.CrossRefGoogle Scholar
  17. Morré, D. J.; Morré, D. M.; Penel, C.; Greppin, H. NADH oxidase periodicity of spinach leaves synchronized by light. Int. J. Plant Sci. 160:855–860; 1999b.PubMedCrossRefGoogle Scholar
  18. Morré, D. J.; Selldén, G.; Zhu, X. Z.; Brightman, A. O. Triacontanol stimulates NADH oxidase of soybean hypocotyl plasma membrane. Plant Sci. 79:31–36; 1991.CrossRefGoogle Scholar
  19. Satter, R. L.; Galston, A. W. Mechanisms of the control of leaf movements. Annu. Rev. Plant Physiol. 32:83–110; 1981.CrossRefGoogle Scholar
  20. Wang, S.; Morré, D. M.; Morré, D. J. The NADH: protein disulfide-thiol oxidoreductase (NADH oxidase) activity of HeLa plasma membranes exhibits ultradian periodicity. Mol. Biol. Cell 8:146a; 1997.Google Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  • D. James Morré
    • 1
    Email author
  • Rhea Pogue
    • 1
    • 2
  • Dorothy M. Morré
    • 2
  1. 1.Department of Medicinal ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of Foods and NutritionPurdue UniversityWest LafayetteUSA

Personalised recommendations