Skip to main content

Advertisement

Log in

Program for the application of genetic transformation for crop improvement in the semi-arid tropics

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The semi-arid tropics are characterized by unpredictable weather, limited and erratic rainfall and nutrient-poor soils and suffer from a host of agricultural constraints Several diseases, insect pests and drought affect crop productivity. Developing stress-resistant crops has been a worthwhile activity of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Mandated crops of ICRISAT, including groundnut, pigeonpea, chickpea, sorghum and pearl millet, are the main staple foods for nearly one billion people in the semi-arid tropics. Genetic transformation provides a complementary means for the genetic betterment of the genome of these crops. Judicious application of biotechnological tools holds great potential for alleviating some of the major constraints to productivity of these crops in the agricultural systems of the semi arid tropics. This article reviews plant genetic engineering in relation to its applications in genetic enhancement and the improvement of important crops of the semi-arid tropics. For the benefit of nonbiotechnologists, a brief review of technical aspects of plant genetic engineering is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, K. R.; Hussey, R. S.; Krusberg, L. R., et al. Plant and soil nematodes. Societal impact and focus for the future. J. Nematol. 26:126–137; 1994.

    Google Scholar 

  • Binns, A. N.; Thomashow, M. F. Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 42:575–606; 1988.

    Article  CAS  Google Scholar 

  • Birch, R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Mol. Biol. 48:297–326; 1997.

    Article  CAS  Google Scholar 

  • Blok, V. C.; Ziegler, A.; Robinson, D. J. et al. Sequences of 10 variants of the satellite-like RNA-3 of groundnut rosette virus. Virology 202:25–32; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Blundy, K. S.; Blundy, M. A. C.; Carter, D., et al. The expression of class-1 patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Mol. Biol. 16:153–160; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Borlaug, N. E. Contributions of conventional plant breeding to food production. Science 219:689–693; 1983.

    Article  PubMed  Google Scholar 

  • Borlaug, N. E. Feeding a world of 10 million people: the miracle ahead. Plant Tiss. Cult. Bio/Technol. 3:119–127; 1997.

    Google Scholar 

  • Chintapalli, P. L.; Moss, J. P.; Sharma, K. K., et al. In vitro culture provides additional variation for pigeonpea [Cajanus cajan (L.) Millsp.] crop improvement. In Vitro Cell. Dev. Biol.-Plant 33:30–37; 1997.

    Google Scholar 

  • Coffee, R.A., Dunwell, J.M., Transformation of plant cells. US Pat. No. 5,464,765; 1995.

  • Dale, P. J.; Irwin, J. A.; Scheffler, J. A. The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22; 1993.

    Article  CAS  Google Scholar 

  • Draper, J.; Scott, R.; Armitage, P., et al. Plant genetic transformation and gene expression: a laboratory manual. Oxford: Blackwell; 1988.

    Google Scholar 

  • Ejeta, G., Butler, L.G., Hess, D.E., et al., Breeding for Striga resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No., 97–5; 1997; 504–516.

  • Finnegan, J.; McElroy, D. Transgene inactivation: plant fight back! Bio/Technology 12:883–888; 1994.

    Article  Google Scholar 

  • Goodman, R. M.; Hauptli, H.; Crossway, A., et al. Gene transfer in crop improvement. Science 236:48–54; 1987.

    Article  CAS  PubMed  Google Scholar 

  • Greco, N. Nematodes and their control in chickpea. Saxena, M.C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:271–281.

    Google Scholar 

  • Grimsley, N. H.; Hohn, T.; Davies, J. W., et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179; 1987.

    Article  CAS  Google Scholar 

  • Grimsley, N. H.; Romoss, C.; Hohn, T. et al. Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Biotechnology 6:185–189; 1988.

    Article  Google Scholar 

  • Hague, N. M. H.; Gowen, S. R. Chemical control of nematodes. Brown, R. H.; Kerry, B. R. Principles and practice of nematode control in crops. Sydney: Academic Press; 1987:131–178.

    Google Scholar 

  • Henzell, R.G.; Peterson, G.C.; Teetes, G.L., et al. Breeding for resistance to panicle pests of sorghum and pearl millet. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet, Lubbock, TX: INTSOR-MIL, Publ. No. 97-5 (1997) 225–280.

    Google Scholar 

  • Herrera-Estrella, L.; Teeri, T. H.; Simpson, J. Use of reporter genes to study gene expression in plant cells. Gelvin, S. B.; Schilperoort, R. A.; Verma, D. P. S. Plant molecular biology manual B1. Dordrecht, The Netherlands: Kluwer; 1988:1–22.

    Google Scholar 

  • Hici, Y.; Komari, T., Transformation of monocotyledons using Agrobacterium. Int. Pat. WO 94/00977; 1994.

    Google Scholar 

  • Hobbs, S. L. A.; Kpodar, P.; Delong, C. M. O. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851–864; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Horsch, R. B.; Fraley, R. T.; Rogers, S. G., et al. Inheritance of functional foreign genes in plants. Science 223:496–498; 1984.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R.; Goldsbrough, A.; Beven, M. Transcriptional regulation of patatin-1 gene in potato. Plant Mol. Biol. 14:995–1006; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Beven, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Jodha, N. S.; Subba Rao, K. V. Chickpea: world importance and distribution. Saxena, M. C.; Singh, K. B. The chickpea. Wallingford, UK; CAB International; 1987: 1–10.

    Google Scholar 

  • Johnston, D. J.; Williamson, B.; McMillan, G. P. The interaction in planta of polygalacturonase from Botrytis cinerea with a cell wall-bound polygalacturonase-inhibiting protein (PGIP) in raspberry fruits. J. Exp. Bot. 45:1837–1843; 1994.

    Article  CAS  Google Scholar 

  • Klee, H.; Horsch, R.; Rogers, S. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38:467–486; 1987.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Arentzen, R.; Lewis, P. A., et al. Transformation of microbes plants and animals by particle bombardment. BioTechnology 10:286–291; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T. M.; Fromm, M. E.; Gradziel, T., et al. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. BioTechnology 6:559–564; 1988.

    Article  CAS  Google Scholar 

  • Kung, S. D. Introduction: from hybrid plants to transgenic plants. Kung, S. D.; Wu, R. Transgenic plants, engineering and utilization. San Diego, CA: Academic Press; 1993:1–12.

    Google Scholar 

  • Levin, M.; Strauss, H. S. Overview of risk assessment and regulation of environmental biotechnology. Risk assessment in genetic engineering. New York: McGraw-Hill; 1993.

    Google Scholar 

  • Lichtenstein, C. P.; Fuller, S. L. Vectors for the genetic engineering of plants. Genetic Engineering. London: Academic Press; 1987.

    Google Scholar 

  • Lindsey, K.; Jones, M. G. K. Plant biotechnology in agriculture. Milton Keynes, UK: Open University Press; 1989.

    Google Scholar 

  • Maliga, P., Maliga, Z.S., Method for stably transforming plastids of multicellular plants. US Pat. No. 5, 451, 513; 1995.

  • Maniatis, T.; Goodbourn, S.; Fischer, J. A. Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M. A.; Matzke, A. J. M. How and why do plants inactive homologous (trans)genes? Plant Physiol. 107:679–685; 1995.

    PubMed  CAS  Google Scholar 

  • McDonald, D. The ICRISAT approach to research on the groundnut aflatoxin problem. Proc. Int. Workshop on aflatoxin contamination of groundnut. Patancheru, India: ICRISAT:317–321; 1989.

    Google Scholar 

  • Meyer, P. Variation of transgene expression in plants. Euphytica 85:359–366; 1995.

    Article  CAS  Google Scholar 

  • Meyer, P.; Walgenbach, E.; Bussmann, K., et al. Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol. Gen. Genet. 199:269–276; 1985.

    Google Scholar 

  • Miller, F., Muller, N., Monk, R. et al. Breeding photoperiod insensitive sorghums for adaptation and yield. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSOR-MIL Publ. No. 97-5; 1997:59–70.

  • Miller, J. S.; Wesley, S. V.; Naidu, R. A., et al. The nucleotide sequence of RNA-1 of Indian peanut clump furovirus. Arch. Virol. 141:2301–2312; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Moloney, M. M.; Walker, J. M.; Sharma, K. K. An efficient method for Agrobacterium-mediated transformation in Brassica napus cotyledon explants. Plant Cell Rep. 8:238–242; 1989.

    Article  CAS  Google Scholar 

  • Nene, Y. L. Multiple-disease resistance in grain legumes. Annu. Rev. Phytopathol. 26:208–217; 1988.

    Article  Google Scholar 

  • Nene, Y. L.; Reddy, M. V. Chickpea diseases and their control. Sexena, M. C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:233–270.

    Google Scholar 

  • Okada, K.; Takebe, I.; Nagata, T. Expression and integration of genes introduced into highly synchronized plant protoplasts. Mol. Gen. Genet. 205:398–403; 1986.

    Article  CAS  Google Scholar 

  • Ortiz, R. Critical role of plant biotechnology for the genetic improvement of food crops: perspectives for the next millennium. Electron. J. Biotechnol. 1:1998, http://www.ejb.org/content/vol1/issue3/full/7//.

  • Paszkowski, J., Potrykus, I., Hohn, B., et al., Transformation of hereditary material in plants. US Pat. No. 5,453,367; 1995.

  • Peterson, G.C., Reddy, B.V.S., Youm, O., et al. Breeding for resistance to foliar and stem-feeding insects of sorghum and pearl millet. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INSORMIL Publ. No. 97-5 (1997) 281–302.

  • Potrykus, I. Gene transfer to plants: assessment and perspectives. Physiol. Plant 79:125–134; 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Physiol. Mol. Biol. 42:205–255; 1991.

    Article  CAS  Google Scholar 

  • Potrykus, I.; Shillito, R. D. Protoplasts: isolation, culture and plant regeneration. Methods Enzymol. 118:459–478; 1989.

    Google Scholar 

  • Rai, K.N., Anand Kumar, K., Andrews, D.J., et al., Breeding pearl millet for grain yield and stability. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No. 97-5 (1997) 71–83.

  • Reddy, D. V. R. Groundnut viruses and virus diseases: distribution, identification and control. Annu. Rev. Plant Pathol., 70:665–678; 1991.

    Google Scholar 

  • Reddy, M. V.; Sharma, S. B.; Nene, Y. L. Pigeonpea: disease management. Nene, Y. L.; Hall, S. D.; Sheila, V. K. The pigeonpea. Wallingford, UK: CAB International; 1990:303–347.

    Google Scholar 

  • Reddy, M. V.; Sheila, V. K. Phytophthora blight of pigeonpea: present status and future priorities. Int. J. Pest Manag. 40:98–102; 1994.

    Article  Google Scholar 

  • Reed, W.; Cardona, C.; Sithanantham, S., et al The chickpea insect pests and their control. Saxena, M. C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:282–318.

    Google Scholar 

  • Reichel, C.; Mathur, J.; Eckes, P., et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent, protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93:5888–5893; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, B.; Sprengel, R.; Will, H., et al. A new sensitive method for quantitative and qualitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Roest, S.; Gilissen, L. J. W. Plant regeneration from protoplasts: a literature review. Acta Bot. Neerl. 38:1–23; 1989.

    Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbour Press; 1989.

    Google Scholar 

  • Sanford, J. C. Biolistic plant transformation. Physiol. Plant. 79:206–209; 1990.

    Article  CAS  Google Scholar 

  • Sanford, J.C., Wolf, E.D., Allen, N.K. Method for transporting substances into living cells and tissues and apparatus therefor. US Pat. No. 4,954,050; 1990.

  • Sanford, J.C., Wolf, E.D., Allen, N.K., Biolistic apparatus for delivering substances into cells and tissues in a nonlethal manner. Aust. Pat. AU 621561; 1992.

  • Sasser, J. N.; Freckman, D. W. A world perspectiveron nematology: the role of society. Veech, J. A.; Dickson, D. W. Vistas on nematology: commemoration of the twenty-fifth anniversary of the Society of Nematologists. Hyattsville, MD: Society of Nematologists: 1987: 7–14.

    Google Scholar 

  • Schibler, U.; Sierra, F. Alternative promoters in developmental gene expression. Annu. Rev. Genet. 21:237–257; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Schilperoort, R.A., Hoekama, A., Hooykas, P.J.J., Process for the incorporation of foreign DNA into the genome of dicotyledonous plants. US Pat. No. 4,940,838; 1990.

  • Scott, K. P.; Farmer, M. J.; Robinson, D. J., et al. Comparison of the coat protein of groundnut rosette assistor virus with those of other luteoviruses. Ann. Appl. Biol. 128:77–83; 1996.

    CAS  Google Scholar 

  • Senthil, G.; Williamson, B.; Ramsay, G. Efficient transformation and regeneration of chickpea (Cicer arietinum). In: Proc. 15th EUCARPIA General Congress on Genetics and Breeding for Crop Quality and Resistance, 20–25 September, Viterbo, Italy; 1998.

  • Shanower, T. G.; Romeis, J.; Minja, E. M. Insect pests of pigeonpea and their management. Annu. Rev. Entomol. 44:77–96; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K. K.; Anjaiah, V.; Moss, J. P. High frequency regeneration and transformation of peanut (Arachis hypogaea L.). Plant Physiol. 102:175; 1993a.

    Google Scholar 

  • Sharma, K. K.; Anjaiah, V.; Moss, J. P. Production of transgenic plants of groundnut (Arachis hypogaea L.) by Agrobacterium-mediated genetic transformation. Int. Arachis Newsl. 13:23–25; 1993b.

    Google Scholar 

  • Sharma, K. K.; Bhojwani, S. S.; Thorpe, T. A. High frequency regeneration of shoots and roots from cotyledon explants of Brassica juncea (L.) Czern. Plant Sci. 66:247–253; 1990.

    Article  CAS  Google Scholar 

  • Sharma, S. B. Nematode diseases of chickpea and pigeonpea. Pulse pathology progress report No. 43. Patancheru, India: ICRISAT; 1985:1–103.

    Google Scholar 

  • Sharma, S. B.; McDonald, D. Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet, and suggestions for future work. Crop Prot. 9:453–458; 1990.

    Article  Google Scholar 

  • Sharma, S. B.; Remananan, P.; Jain, K. C. Resistance to cyst nematode (Heterodera cajani) in pigeonpea cultivars and in wild relatives of Cajanus. Ann. Appl. Biol. 123:75–81; 1993a.

    Google Scholar 

  • Sharma, S. B.; Singh, O.; Pundir, R. P. S., et al. Screening of Cicer species and chickpea genotypes for resistance to Meloidogyne javanica. Nematol. Medit. 21:165–167; 1993b.

    Google Scholar 

  • Singh, L.; Gupta, S. C.; Faris, D. G. Pigeonpea: breeding. Nene, Y. L.; Hall, S. D.; Sheila, V. K. The pigeonpea. Wallingford, UK: CAB International; 1990:375–399.

    Google Scholar 

  • Singh, S. D.; King, S. B.; Werder, J. Downy mildew disease of pearl millet. Information Bulletin No. 37. Patancheru, India: ICRISAT; 1993:1–30.

    Google Scholar 

  • Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–131; 1957.

    Google Scholar 

  • Stam, M.; Mol, J. N.; Kooter, J. M., et al. The silence of genes in transgenic plants. Ann. Bot. 79:3–12; 1997.

    Article  CAS  Google Scholar 

  • Stenhouse, J.W.; Bandyopadhyay, R.; Singh, S.D., et al. Breeding for grain mold resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No. 97-5; 1997:326–336.

  • Subrahmanyam, P.; Hildebrand, G. L.; Naidu, R. A., et al. Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann. Appl. Biol. 132:473–485; 1998.

    Article  Google Scholar 

  • Taliansky, M. E.; Ryabov, E. V.; Robinson, D. J. Two distinct mechanisms of transgenic resistance mediated by groundnut rosette virus satellite RNA sequences. Mol. Plant-Microbe Interact 11:367–374; 1998.

    CAS  Google Scholar 

  • Thakur, R.P.; Frederiksen, R.A.; Murty, D.S., et al. Breeding for disease resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX; INTSORMIL Publ. No. 97-5; 1997:303–315.

  • Vaucheret, H.; Beclin, C.; Elmayan, T., et al. Transgene-induced gene silencing in plants. Plant J. 16:651–659; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wesley, S. V.; Mayo, M. A.; Jolly, C. A., et al. The coat protein of Indian peanut clump virus: relationships with other furoviruses and with barley stripe mosaic virus. Arch. Virol. 134:271–278; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, J. A.; Ranga Rao, G. V. Groundnut insects. Smartt, J. The groundnut crop. London: Chapman I.B.H.; 1999:317–336.

    Google Scholar 

  • Wilmink, A.; Dons, J. J. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. Biol. Rep. 11:165–185; 1993.

    CAS  Google Scholar 

  • Yadav, O. P.; Weltzien, R. E. Breeding for adaption to abiotic stresses. In: Khairwal, I. S.; Rai, K. N.; Andrews, D. J., et al., eds. Pearl millet breeding. New Delhi: Oxford & I.B.H.; 1999:317–336.

    Google Scholar 

  • Zambryski, P. C. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 22:1–30; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Zambryski, P. C. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:465–490; 1992.

    Article  CAS  Google Scholar 

  • Zambryski, P.; Tempe, J.; Schell, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.K., Ortiz, R. Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell.Dev.Biol.-Plant 36, 83–92 (2000). https://doi.org/10.1007/s11627-000-0019-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0019-1

Key words

Navigation