Summary
The semi-arid tropics are characterized by unpredictable weather, limited and erratic rainfall and nutrient-poor soils and suffer from a host of agricultural constraints Several diseases, insect pests and drought affect crop productivity. Developing stress-resistant crops has been a worthwhile activity of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Mandated crops of ICRISAT, including groundnut, pigeonpea, chickpea, sorghum and pearl millet, are the main staple foods for nearly one billion people in the semi-arid tropics. Genetic transformation provides a complementary means for the genetic betterment of the genome of these crops. Judicious application of biotechnological tools holds great potential for alleviating some of the major constraints to productivity of these crops in the agricultural systems of the semi arid tropics. This article reviews plant genetic engineering in relation to its applications in genetic enhancement and the improvement of important crops of the semi-arid tropics. For the benefit of nonbiotechnologists, a brief review of technical aspects of plant genetic engineering is also included.
Similar content being viewed by others
References
Barker, K. R.; Hussey, R. S.; Krusberg, L. R., et al. Plant and soil nematodes. Societal impact and focus for the future. J. Nematol. 26:126–137; 1994.
Binns, A. N.; Thomashow, M. F. Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 42:575–606; 1988.
Birch, R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Mol. Biol. 48:297–326; 1997.
Blok, V. C.; Ziegler, A.; Robinson, D. J. et al. Sequences of 10 variants of the satellite-like RNA-3 of groundnut rosette virus. Virology 202:25–32; 1994.
Blundy, K. S.; Blundy, M. A. C.; Carter, D., et al. The expression of class-1 patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Mol. Biol. 16:153–160; 1991.
Borlaug, N. E. Contributions of conventional plant breeding to food production. Science 219:689–693; 1983.
Borlaug, N. E. Feeding a world of 10 million people: the miracle ahead. Plant Tiss. Cult. Bio/Technol. 3:119–127; 1997.
Chintapalli, P. L.; Moss, J. P.; Sharma, K. K., et al. In vitro culture provides additional variation for pigeonpea [Cajanus cajan (L.) Millsp.] crop improvement. In Vitro Cell. Dev. Biol.-Plant 33:30–37; 1997.
Coffee, R.A., Dunwell, J.M., Transformation of plant cells. US Pat. No. 5,464,765; 1995.
Dale, P. J.; Irwin, J. A.; Scheffler, J. A. The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22; 1993.
Draper, J.; Scott, R.; Armitage, P., et al. Plant genetic transformation and gene expression: a laboratory manual. Oxford: Blackwell; 1988.
Ejeta, G., Butler, L.G., Hess, D.E., et al., Breeding for Striga resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No., 97–5; 1997; 504–516.
Finnegan, J.; McElroy, D. Transgene inactivation: plant fight back! Bio/Technology 12:883–888; 1994.
Goodman, R. M.; Hauptli, H.; Crossway, A., et al. Gene transfer in crop improvement. Science 236:48–54; 1987.
Greco, N. Nematodes and their control in chickpea. Saxena, M.C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:271–281.
Grimsley, N. H.; Hohn, T.; Davies, J. W., et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179; 1987.
Grimsley, N. H.; Romoss, C.; Hohn, T. et al. Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Biotechnology 6:185–189; 1988.
Hague, N. M. H.; Gowen, S. R. Chemical control of nematodes. Brown, R. H.; Kerry, B. R. Principles and practice of nematode control in crops. Sydney: Academic Press; 1987:131–178.
Henzell, R.G.; Peterson, G.C.; Teetes, G.L., et al. Breeding for resistance to panicle pests of sorghum and pearl millet. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet, Lubbock, TX: INTSOR-MIL, Publ. No. 97-5 (1997) 225–280.
Herrera-Estrella, L.; Teeri, T. H.; Simpson, J. Use of reporter genes to study gene expression in plant cells. Gelvin, S. B.; Schilperoort, R. A.; Verma, D. P. S. Plant molecular biology manual B1. Dordrecht, The Netherlands: Kluwer; 1988:1–22.
Hici, Y.; Komari, T., Transformation of monocotyledons using Agrobacterium. Int. Pat. WO 94/00977; 1994.
Hobbs, S. L. A.; Kpodar, P.; Delong, C. M. O. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851–864; 1990.
Horsch, R. B.; Fraley, R. T.; Rogers, S. G., et al. Inheritance of functional foreign genes in plants. Science 223:496–498; 1984.
Jefferson, R.; Goldsbrough, A.; Beven, M. Transcriptional regulation of patatin-1 gene in potato. Plant Mol. Biol. 14:995–1006; 1990.
Jefferson, R. A.; Kavanagh, T. A.; Beven, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.
Jodha, N. S.; Subba Rao, K. V. Chickpea: world importance and distribution. Saxena, M. C.; Singh, K. B. The chickpea. Wallingford, UK; CAB International; 1987: 1–10.
Johnston, D. J.; Williamson, B.; McMillan, G. P. The interaction in planta of polygalacturonase from Botrytis cinerea with a cell wall-bound polygalacturonase-inhibiting protein (PGIP) in raspberry fruits. J. Exp. Bot. 45:1837–1843; 1994.
Klee, H.; Horsch, R.; Rogers, S. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38:467–486; 1987.
Klein, T. M.; Arentzen, R.; Lewis, P. A., et al. Transformation of microbes plants and animals by particle bombardment. BioTechnology 10:286–291; 1992.
Klein, T. M.; Fromm, M. E.; Gradziel, T., et al. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. BioTechnology 6:559–564; 1988.
Kung, S. D. Introduction: from hybrid plants to transgenic plants. Kung, S. D.; Wu, R. Transgenic plants, engineering and utilization. San Diego, CA: Academic Press; 1993:1–12.
Levin, M.; Strauss, H. S. Overview of risk assessment and regulation of environmental biotechnology. Risk assessment in genetic engineering. New York: McGraw-Hill; 1993.
Lichtenstein, C. P.; Fuller, S. L. Vectors for the genetic engineering of plants. Genetic Engineering. London: Academic Press; 1987.
Lindsey, K.; Jones, M. G. K. Plant biotechnology in agriculture. Milton Keynes, UK: Open University Press; 1989.
Maliga, P., Maliga, Z.S., Method for stably transforming plastids of multicellular plants. US Pat. No. 5, 451, 513; 1995.
Maniatis, T.; Goodbourn, S.; Fischer, J. A. Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245; 1987.
Matzke, M. A.; Matzke, A. J. M. How and why do plants inactive homologous (trans)genes? Plant Physiol. 107:679–685; 1995.
McDonald, D. The ICRISAT approach to research on the groundnut aflatoxin problem. Proc. Int. Workshop on aflatoxin contamination of groundnut. Patancheru, India: ICRISAT:317–321; 1989.
Meyer, P. Variation of transgene expression in plants. Euphytica 85:359–366; 1995.
Meyer, P.; Walgenbach, E.; Bussmann, K., et al. Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol. Gen. Genet. 199:269–276; 1985.
Miller, F., Muller, N., Monk, R. et al. Breeding photoperiod insensitive sorghums for adaptation and yield. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSOR-MIL Publ. No. 97-5; 1997:59–70.
Miller, J. S.; Wesley, S. V.; Naidu, R. A., et al. The nucleotide sequence of RNA-1 of Indian peanut clump furovirus. Arch. Virol. 141:2301–2312; 1996.
Moloney, M. M.; Walker, J. M.; Sharma, K. K. An efficient method for Agrobacterium-mediated transformation in Brassica napus cotyledon explants. Plant Cell Rep. 8:238–242; 1989.
Nene, Y. L. Multiple-disease resistance in grain legumes. Annu. Rev. Phytopathol. 26:208–217; 1988.
Nene, Y. L.; Reddy, M. V. Chickpea diseases and their control. Sexena, M. C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:233–270.
Okada, K.; Takebe, I.; Nagata, T. Expression and integration of genes introduced into highly synchronized plant protoplasts. Mol. Gen. Genet. 205:398–403; 1986.
Ortiz, R. Critical role of plant biotechnology for the genetic improvement of food crops: perspectives for the next millennium. Electron. J. Biotechnol. 1:1998, http://www.ejb.org/content/vol1/issue3/full/7//.
Paszkowski, J., Potrykus, I., Hohn, B., et al., Transformation of hereditary material in plants. US Pat. No. 5,453,367; 1995.
Peterson, G.C., Reddy, B.V.S., Youm, O., et al. Breeding for resistance to foliar and stem-feeding insects of sorghum and pearl millet. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INSORMIL Publ. No. 97-5 (1997) 281–302.
Potrykus, I. Gene transfer to plants: assessment and perspectives. Physiol. Plant 79:125–134; 1990.
Potrykus, I. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Physiol. Mol. Biol. 42:205–255; 1991.
Potrykus, I.; Shillito, R. D. Protoplasts: isolation, culture and plant regeneration. Methods Enzymol. 118:459–478; 1989.
Rai, K.N., Anand Kumar, K., Andrews, D.J., et al., Breeding pearl millet for grain yield and stability. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No. 97-5 (1997) 71–83.
Reddy, D. V. R. Groundnut viruses and virus diseases: distribution, identification and control. Annu. Rev. Plant Pathol., 70:665–678; 1991.
Reddy, M. V.; Sharma, S. B.; Nene, Y. L. Pigeonpea: disease management. Nene, Y. L.; Hall, S. D.; Sheila, V. K. The pigeonpea. Wallingford, UK: CAB International; 1990:303–347.
Reddy, M. V.; Sheila, V. K. Phytophthora blight of pigeonpea: present status and future priorities. Int. J. Pest Manag. 40:98–102; 1994.
Reed, W.; Cardona, C.; Sithanantham, S., et al The chickpea insect pests and their control. Saxena, M. C.; Singh, K. B. The chickpea. Wallingford, UK: CAB International; 1987:282–318.
Reichel, C.; Mathur, J.; Eckes, P., et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent, protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93:5888–5893; 1996.
Reiss, B.; Sprengel, R.; Will, H., et al. A new sensitive method for quantitative and qualitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211; 1984.
Roest, S.; Gilissen, L. J. W. Plant regeneration from protoplasts: a literature review. Acta Bot. Neerl. 38:1–23; 1989.
Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbour Press; 1989.
Sanford, J. C. Biolistic plant transformation. Physiol. Plant. 79:206–209; 1990.
Sanford, J.C., Wolf, E.D., Allen, N.K. Method for transporting substances into living cells and tissues and apparatus therefor. US Pat. No. 4,954,050; 1990.
Sanford, J.C., Wolf, E.D., Allen, N.K., Biolistic apparatus for delivering substances into cells and tissues in a nonlethal manner. Aust. Pat. AU 621561; 1992.
Sasser, J. N.; Freckman, D. W. A world perspectiveron nematology: the role of society. Veech, J. A.; Dickson, D. W. Vistas on nematology: commemoration of the twenty-fifth anniversary of the Society of Nematologists. Hyattsville, MD: Society of Nematologists: 1987: 7–14.
Schibler, U.; Sierra, F. Alternative promoters in developmental gene expression. Annu. Rev. Genet. 21:237–257; 1987.
Schilperoort, R.A., Hoekama, A., Hooykas, P.J.J., Process for the incorporation of foreign DNA into the genome of dicotyledonous plants. US Pat. No. 4,940,838; 1990.
Scott, K. P.; Farmer, M. J.; Robinson, D. J., et al. Comparison of the coat protein of groundnut rosette assistor virus with those of other luteoviruses. Ann. Appl. Biol. 128:77–83; 1996.
Senthil, G.; Williamson, B.; Ramsay, G. Efficient transformation and regeneration of chickpea (Cicer arietinum). In: Proc. 15th EUCARPIA General Congress on Genetics and Breeding for Crop Quality and Resistance, 20–25 September, Viterbo, Italy; 1998.
Shanower, T. G.; Romeis, J.; Minja, E. M. Insect pests of pigeonpea and their management. Annu. Rev. Entomol. 44:77–96; 1999.
Sharma, K. K.; Anjaiah, V.; Moss, J. P. High frequency regeneration and transformation of peanut (Arachis hypogaea L.). Plant Physiol. 102:175; 1993a.
Sharma, K. K.; Anjaiah, V.; Moss, J. P. Production of transgenic plants of groundnut (Arachis hypogaea L.) by Agrobacterium-mediated genetic transformation. Int. Arachis Newsl. 13:23–25; 1993b.
Sharma, K. K.; Bhojwani, S. S.; Thorpe, T. A. High frequency regeneration of shoots and roots from cotyledon explants of Brassica juncea (L.) Czern. Plant Sci. 66:247–253; 1990.
Sharma, S. B. Nematode diseases of chickpea and pigeonpea. Pulse pathology progress report No. 43. Patancheru, India: ICRISAT; 1985:1–103.
Sharma, S. B.; McDonald, D. Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet, and suggestions for future work. Crop Prot. 9:453–458; 1990.
Sharma, S. B.; Remananan, P.; Jain, K. C. Resistance to cyst nematode (Heterodera cajani) in pigeonpea cultivars and in wild relatives of Cajanus. Ann. Appl. Biol. 123:75–81; 1993a.
Sharma, S. B.; Singh, O.; Pundir, R. P. S., et al. Screening of Cicer species and chickpea genotypes for resistance to Meloidogyne javanica. Nematol. Medit. 21:165–167; 1993b.
Singh, L.; Gupta, S. C.; Faris, D. G. Pigeonpea: breeding. Nene, Y. L.; Hall, S. D.; Sheila, V. K. The pigeonpea. Wallingford, UK: CAB International; 1990:375–399.
Singh, S. D.; King, S. B.; Werder, J. Downy mildew disease of pearl millet. Information Bulletin No. 37. Patancheru, India: ICRISAT; 1993:1–30.
Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–131; 1957.
Stam, M.; Mol, J. N.; Kooter, J. M., et al. The silence of genes in transgenic plants. Ann. Bot. 79:3–12; 1997.
Stenhouse, J.W.; Bandyopadhyay, R.; Singh, S.D., et al. Breeding for grain mold resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX: INTSORMIL Publ. No. 97-5; 1997:326–336.
Subrahmanyam, P.; Hildebrand, G. L.; Naidu, R. A., et al. Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann. Appl. Biol. 132:473–485; 1998.
Taliansky, M. E.; Ryabov, E. V.; Robinson, D. J. Two distinct mechanisms of transgenic resistance mediated by groundnut rosette virus satellite RNA sequences. Mol. Plant-Microbe Interact 11:367–374; 1998.
Thakur, R.P.; Frederiksen, R.A.; Murty, D.S., et al. Breeding for disease resistance in sorghum. In: Proc. Int. Conf. Genet. Improvement of sorghum and pearl millet. Lubbock, TX; INTSORMIL Publ. No. 97-5; 1997:303–315.
Vaucheret, H.; Beclin, C.; Elmayan, T., et al. Transgene-induced gene silencing in plants. Plant J. 16:651–659; 1998.
Wesley, S. V.; Mayo, M. A.; Jolly, C. A., et al. The coat protein of Indian peanut clump virus: relationships with other furoviruses and with barley stripe mosaic virus. Arch. Virol. 134:271–278; 1994.
Wightman, J. A.; Ranga Rao, G. V. Groundnut insects. Smartt, J. The groundnut crop. London: Chapman I.B.H.; 1999:317–336.
Wilmink, A.; Dons, J. J. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. Biol. Rep. 11:165–185; 1993.
Yadav, O. P.; Weltzien, R. E. Breeding for adaption to abiotic stresses. In: Khairwal, I. S.; Rai, K. N.; Andrews, D. J., et al., eds. Pearl millet breeding. New Delhi: Oxford & I.B.H.; 1999:317–336.
Zambryski, P. C. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 22:1–30; 1988.
Zambryski, P. C. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:465–490; 1992.
Zambryski, P.; Tempe, J.; Schell, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201; 1989.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, K.K., Ortiz, R. Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell.Dev.Biol.-Plant 36, 83–92 (2000). https://doi.org/10.1007/s11627-000-0019-1
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11627-000-0019-1