Skip to main content
Log in

Spontaneous activation of endothelial cells: A central role for endogenous IL-1α

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Endothelial cells assume divergent physiologic postures, from a ‘quiescent’ to an ‘activated’ state, and this ability is thought to critically regulate homeostasis of the vascular milieu. While establishing endothelial cell lines, we observed that most of the endothelial cells exhibited ‘spontaneous’ activation with morphological changes once the cells surpassed confluence. In the present study, we investigated whether accumulation and subsequent availability of certain factors in the cells might induce morphologic changes indicating activated phenotype in confluent endothelial cells. Cell lysate from nonactivated confluent endothelial cells activated autologous target cells, whereas culture supernatants did not. Stimulatory activity of the cell lysate was dependent on the concentration of cell lysate, i.e., nonactivated endothelial cell lysate at 25% concentration induced a substantial level of morphologic change. The ‘spontaneous’ as well as the cell lysate-induced change in morphology of endothelial cells was inhibited by neutralization of interleukin (IL)-1α with anti-IL-1α antibody. Correspondingly, cell lysate from confluent non-IL-1-expressing endothelial cells did not alter the morphology of autologous confluent cells even at a higher concentration. Cells that spontaneously changed their morphology correspondingly upregulated IL-1α and IL-8 transcripts. The results indicate that the accumulation and availability of endogenous IL-1α is responsible for the ‘spontaneous’ activation of endothelial cells in culture. Ultimately, through this property, endothelial cells may facilitate normal in vivo host responses, including the regulation of leukocyte trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrightson, C. R.; Baenziger, N. L.; Needleman, P. Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin-1. J. Immunol. 135:1872–1877; 1985.

    PubMed  CAS  Google Scholar 

  2. Anklesaria, P.; Teixido, M.; Laiho, M., et al. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor-α to epidermal growth factor receptors promotes cell proliferation. Proc. Natl. Acad. Sci. USA 87:3289–3293; 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Bakouche, O.; Moreau, J.-L.; Lachman, L. B. Acylation of cell-associated IL-1 by palmitic acid. J. Immunol. 147:2164–2169; 1991.

    PubMed  CAS  Google Scholar 

  4. Bevilacqua, M. P.; Pober, J. S.; Wheeler, R. S., et al. Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines. J. Clin. Invest. 76:2003–2011; 1985.

    PubMed  CAS  Google Scholar 

  5. Cavender, D. E.; Haskard, D. O.; Joseph, B., et al. Interleukin-1 increases the binding of human B and T lymphocytes to endothelial cell monolayers. J. Immunol. 136:203–207; 1986.

    PubMed  CAS  Google Scholar 

  6. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Cotran, R. S. New roles for the endothelium in inflammation and immunity. American Association of Pathologists president’s address. Am. J. Pathol. 129:407–413; 1987.

    PubMed  CAS  Google Scholar 

  8. Cozzolino, F.; Torcia, M.; Aldinicci, D., et al. Interleukin-1 is an autocrine regulator of human endothelial cell growth. Proc. Natl. Acad. Sci. USA 87:6487–6491; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Dinarello, C. A. Interleukin-1 and its biologically related cytokines. Adv. Immunol. 44:153–205; 1989.

    PubMed  CAS  Google Scholar 

  10. Dinarello, C. A. Interleukin-1 and Interleukin-1 antagonism. Blood 77:1627–1652; 1991.

    PubMed  CAS  Google Scholar 

  11. Dinarello, C. A.; Ikejima, T.; Warner, S. J. C., et al. Interleukin-1 induces interleukin-1: induction of circulating interleukin-1 in rabbits in vivo and in human mononuclear cells in vitro. J. Immunol. 139:1902–1910; 1987.

    PubMed  CAS  Google Scholar 

  12. Emeis, J. J.; Kooistra, T. Interleukin-1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J. Exp. Med. 163:1260–1266; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Foreman, K. E.; Vaporciyan, A. A.; Bonish, B. A., et al. C5a-induced expression of P-selectin in endothelial cells. J. Clin. Invest. 94:1147–1155; 1994.

    PubMed  CAS  Google Scholar 

  14. Gamble, J. R.; Harlan, J. M.; Klebanoff, S. J., et al. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc. Natl. Acad. Sci. USA 82:8667–8671; 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Gimbrone, M. A., Jr. Vascular endothelium in hemostasis and thrombosis. Gimbrone, M. A., Jr., ed. Edinburgh: Churchill Livingstone; 1986:1–13.

    Google Scholar 

  16. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Kaplanski, G.; Farnarier, C.; Kaplanski, S., et al. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood 84:4242–4248; 1994.

    PubMed  CAS  Google Scholar 

  18. Kilgore, K. S.; Shen, J. P.; Miller, B. F., et al. Enhancement of the complement membrane attack complex of tumor necrosis factor-α-induced endothelial cell expression of E-selectin and ICAM-1. J. Immunol. 155:1434–1441; 1995.

    PubMed  CAS  Google Scholar 

  19. Kurt-Jones, E. A.; Fiers, W.; Pober, J. S. Membrane interleukin-1 induction on human endothelial cells and dermal fibroblasts. J. Immunol. 139:2317–2324; 1987.

    PubMed  CAS  Google Scholar 

  20. Loppnow, H.; Libby, P. Functional significance of human vascular smooth muscle cell-derived interleukin-1 in paracrine and autocrine regulation pathways. Exp. Cell Res. 198:283–290; 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Lorant, D. E.; Patel, K. D. A.; McIntyre, T. M., et al. Coexpression of GMP-140 and platelet-activating factor by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J. Cell Biol. 115:223–234; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Maier, J. A.; Voulalas, P.; Roeder, D. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science (Wash DC) 249:1570–1574; 1990.

    Article  CAS  Google Scholar 

  23. Massagué, J. Transforming growth factor-α: a model for membrane-anchored growth factor. J. Biol. Chem. 265:21393–21396; 1990.

    PubMed  Google Scholar 

  24. Miossec, P.; Cavender, D.; Ziff, M. Production of interleukin-1 by human endothelial cells. J. Immunol. 136:2486–2491; 1986.

    PubMed  CAS  Google Scholar 

  25. Nawroth, P. P.; Handley, D. A.; Esmon, C. T., et al. Interleukin-1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc. Natl. Acad. Sci. USA 83:3460–3464; 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Pober, J. S. Cytokine-mediated activation of vascular endothelium: physiology and pathology. Am. J. Pathol. 133:426–433; 1988.

    PubMed  CAS  Google Scholar 

  27. Pober, J. S.; Bevilacqua, M. P.; Mendrick, D. L., et al. Two distinct monokines, interleukin-1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J. Immunol. 136:1680–1687; 1986.

    PubMed  CAS  Google Scholar 

  28. Pober, J. S.; Cotran, R. S. The role of endothelial cells in inflammation. Transplantation (Baltimore) 50:537–544; 1990.

    CAS  Google Scholar 

  29. Pober, J. S.; Lapierre, L. A.; Stolpen, A. H., et al. Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin-1 species. J. Immunol. 138:3319–3324; 1987.

    PubMed  CAS  Google Scholar 

  30. Qi, J.; Kreutzer, D. L. Fibrin activation of vascular endothelial cells: induction of IL-8 expression. J. Immunol. 155:867–876; 1995.

    PubMed  CAS  Google Scholar 

  31. Schleimer, R. P.; Rutledge, B. K. Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin-1, endotoxin and tumor-promoting phorbol diesters. J. Immunol. 136:649–654; 1986.

    PubMed  CAS  Google Scholar 

  32. Selvan, R. S.; Butterfield, J. H.; Krangel, M. S. Expression of multiple chemokine genes by human mast cell leukemia. J. Biol. Chem. 269:13893–13898; 1994.

    PubMed  CAS  Google Scholar 

  33. Selvan, R. S.; Kapadia, H. B.; Platt, J. L. Complement-induced expression of chemokine genes in endothelium: regulation by IL-1-dependent and -independent mechanisms. J. Immunol. 161:4388–4395; 1998.

    PubMed  CAS  Google Scholar 

  34. Sironi, M.; Breviario, F.; Proserpio, P., et al. IL-1 stimulates IL-6 production in endothelial cells. J. Immunol. 142:549–553; 1989.

    PubMed  CAS  Google Scholar 

  35. Skalli, O.; Ropraz, P.; Trzeciak, A. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103(6 Pt 2):2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Stevenson, F. T.; Burstein, S. L.; Fanton, C., et al. The 31-kDa precursor of interleukin-1α is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc. Natl. Acad. Sci. USA 90:7245–7249; 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Strieter, R. M.; Kunkel, S. L.; Showell, H. G., et al. Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta. Science (Wash DC) 243:1467–1469; 1989.

    Article  CAS  Google Scholar 

  38. Warner, S. J. C.; Auger, K. R.; Libby, P. Interleukin-1 induces interleukin-1. II: recombinant human interleukin-1 induces interleukin-1 production by adult human vascular endothelial cells. J. Immunol. 139:1911–1917; 1987.

    PubMed  CAS  Google Scholar 

  39. Yu, C. L.; Haskard, D. O.; Cavender D, et al. Human gamma interferon increases the binding of T lymphocytes to endothelial cells. Clin. Exp. Immunol. 62:554–560; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steen, M.B., Tuck, F.L. & Selvan, R.S. Spontaneous activation of endothelial cells: A central role for endogenous IL-1α. In Vitro Cell.Dev.Biol.-Animal 35, 327–332 (1999). https://doi.org/10.1007/s11626-999-0082-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0082-9

Key words

Navigation