Skip to main content
Log in

A novel human astrocyte cell line (A735) with astrocyte-specific neurotransmitter function

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Studies of brain cell function and physiology are hampered by the limited availability of imortal human brain-derived cell lines, as a result of the technical difficulties encountered in establishing immortal human cells in culture. In this study, we demonstrate the application of recombinant DNA vectors expressing SV40 T antigen for the development of immortal human cell cultures, with morphological, growth, and functional properties of astrocytes.

Primary human astrocytes were transfected with the SV40 T antigen expression vectors, pSV3neo or p735.6, and cultures were established with an extended lifespan. One of these cultures gave rise to an immortal cell line, designated A735. All the human SV40-derived lines retained morphological features and growth properties of type 1 astrocytes. Immunohistochemical studies and Western blot analysis of the intermediate filament proteins and glutamine synthetase demonstrated a differentiated but immature astrocyte phenotype. Transport of γ-amino butyric acid and glutamate were examined and found to be by a glial-specific mechanism, consistent with the cell lines’ retaining aspects of normal glial function.

We conclude that methods based on the use of SV40 T antigen can successfully immortalize human astrocytes, retaining key astrocyte functions, but T antigen-induced proliferation appeared to interfere with expression of glial fibrillary acidic protein. We believe A735 is the first documented nontumor-derived human glial cell line which is immortal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, J.; Itoh, H.; Miwa, T.; Ikeda, K. Immunohistochemical study of glutamine synthetase expression in early glial development. Dev. Brain Res. 72:9–14; 1993.

    Article  CAS  Google Scholar 

  • Bigner, D. D.; Bigner, S. H.; Ponten, J.; Westermark, B.; Mahaley, M. S.; Ruoslahti, E.; Herschmaan, H.; Wikstrand, C. J. Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40:201–229; 1981.

    PubMed  CAS  Google Scholar 

  • Bottenstein, J. E. In: Bottstein, J. and Sato, G., eds. Cell culture in the neurosciences. New York: Plenum Press; 1985:3–43.

    Google Scholar 

  • Brooks, S. E.; Amsterdam, D.; Hoffman, L. M.; Adachi, M.; Schneck, L. Cytology, growth characteristics and cellular alterations following SV40-induced transformation of human foetal brain cells derived from A Gm2 gangliosidosis and control. J. Cell Sci. 38:211–223; 1979.

    PubMed  CAS  Google Scholar 

  • Chang, S. E. In vitro transformation of human epithelial cells. Biochem. Biophys. Acta. 823:161–194; 1986.

    PubMed  CAS  Google Scholar 

  • Dahlstrand, J.; Collins, V. P.; Lendahl, U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52:5334–5341; 1992.

    PubMed  CAS  Google Scholar 

  • Danks, R. A.; Orian, J. M.; Gonzales, M. F.; Tan, S. S.; Alexander, B.; Mikoshiba, K.; Kaye, A. H. Transformation of astrocytes in transgenic mice expressing SV40 T antigen under the transcriptional control of the glial fibrillary acidic protein promoter. Cancer Res. 55:4302–4310; 1995.

    PubMed  CAS  Google Scholar 

  • Davey, P.; Rauth, A. M.; Mason, L.; Addy, L. Spontaneous phenotypic and karyotypic progression in the SV40 transfected cell line SVG during prolonged passage in vitro. J. Neuro-Oncol. 8:13–22; 1990.

    Article  CAS  Google Scholar 

  • Estin, C.; Vernadakis, A. Primary glial cells and brain fibroblasts: interactions in culture. Brain Res. Bull. 16:723–731; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Eves, E. M.; Tucker, M. S.; Roback, J. D.; Downen, M.; Rosner, M. R.; Wainer, B. H. Immortal rat hippocampal cell lines exhibit neuronal and glial lineages and neurotrophin gene expression. Proc. Natl. Acad. Sci. 89:4373–4377; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Evrard, C.; Galiana, E.; Rouget, P. Establishment of ‘normal’ nervous cell lines after transfer of polyoma virus and adenovirus into murine brain cells. EMBO J. 5:3157–3162; 1986.

    PubMed  CAS  Google Scholar 

  • Frame, M. C.; Freshney, R. I.; Vaughan, P. F. T.; Graham, D. I.; Shaw, R. Interrelationship between differentiation and malignancy-associated properties in glioma. Br. J. Cancer 49:269–280; 1984.

    PubMed  CAS  Google Scholar 

  • Frederiksen, K.; Jat, P. S.; Valtz, N.; McKay, R. D. G. Immortalisation of precursor cells from the mammalian CNS. Neuron 1:439–448; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Freshney, R. I. Culture of animal cells, manual of basic technique. 3rd ed. Chichester, UK: Wiley & Sons; 1994.

    Google Scholar 

  • Geller, H. M.; Dubois-Dalcq, M. Antigenic and functional characterization of a rat central nervous system-derived cell line immortalized by a ret-roviral vector. J. Cell Biol. 107:1977–1986; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Groves, A. K.; Entwistle, A.; Jat, P. S.; Noble, M. The characterization of astrocyte cell lines that display properties of glial scar tissue. Dev. Biol. 159:87–104; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hara, A.; Sakai, N.; Yamada, H.; Nikawa, S.; Ohno, T.; Tanaka, T.; Mori, H. Proliferative assessment of GFAP-positive and GFAP-negative glioma cells by nucleolar organiser region staining. Surg. Neurol. 36:190–194; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E.; Lane, D. Antibodies. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1988.

    Google Scholar 

  • Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 75:585–621; 1961.

    Article  Google Scholar 

  • Huschtscha, L. I.; Holliday, R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J. Cell Sci. 63:77–99; 1983.

    PubMed  CAS  Google Scholar 

  • Kennedy, P. G. E.; Fok-Seang, J. Studies on the development, antigenic phenotype and function of human glial cells in tissue culture. Brain 109:1261–1277; 1986.

    Article  PubMed  Google Scholar 

  • Kennedy, P. G. E.; Watkins, B. A.; Thomas, D. G.; Noble, M. D. Antigenic expression by cells derived from human gliomas does not correlate with morphological classification. Neuropathol. Appl. Neurobiol. 13:327–347; 1987.

    PubMed  CAS  Google Scholar 

  • Major, E. O.; Miller, A. E.; Mourrain, P.; Traub, R. G.; Widt, D.; Sever, J. Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc. Natl. Acad. Sci. USA 82:1257–1261; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A.; Bell, K. P.; Norenberg, M. D. Glutamine synthetase: glial localization in brain. Science (Wash DC) 195:1356–1358; 1997.

    Article  Google Scholar 

  • Mayne, L. V. Strategies for immortalising human primary cells and the steps that lead to immortality. In: Wilson, G., et al., ed. Pharmaceutical applications of cell and tissue culture to drug transport. New York: Plenum Press; 1991:347–354.

    Google Scholar 

  • Mayne, L. V.; Price, T. N. C.; Moorwood, K.; Burke, J. F. Development of immortal human fibroblast cell lines. In: Freshney, R. I.; Freshney, M. G., ed. Culture of immortalized cells. Chickester, UK: J. Wiley & Sons, Inc.; 1996:77–93.

    Google Scholar 

  • McCarthy, K. D.; de Vellis, J. Preparation of separate astroglial and oligodendrocyte cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, R. S.; de Vellis, J. Growth of purified astrocytes in a chemically defined medium. Proc. Natl. Acad. Sci. USA 78:7205–7209; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Mrak, R. E.; Sheng, J. G.; Griffin, W. S. T. Glial cytokines in Alzheimer’s Disease—review and pathogenic implications. Human Pathol. 26:816–823; 1995.

    Article  CAS  Google Scholar 

  • Nishiyama, A.; Onda, K.; Washiyama, K.; Kumanishi, T.; Kuwano, R.; Sakimura, K.; Takahashi, Y. Differential expression of glial fibrillary acidic protein in human glioma cell lines. Acta Neuropathol. 78:9–15; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg, M. D.; Martinez-Hernandez, A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Norton, W. T.; Farooq, M. Astrocytes cultured from mature brain derive from glial precursor cells. J. Neurosci. 9:769–775; 1989.

    PubMed  CAS  Google Scholar 

  • Pekny, M.; Eliasson, C.; Chien, C.-L.; Kindblom, L. G.; Liem, R.; Hamberger, A.; Betsholtz, C. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp. Cell Res. 239:332–343; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Smith, O. M.; Smith, J. R. Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc. Natl. Acad. Sci. USA 85:6042–6046; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Pfrieger, F. W.; Barres, B. A. New views on synapse-glia interactions. Curr. Opin. Neurobiol. 6:615–621; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Price, T. N. C.; Moorwood, K.; James, M. R.; Burke, J. F.; Mayne, L. V. Cell cycle progression, morphology and contact inhibition are regulated by the amount of SV40 T antigen in immortal human cells. Oncogene 9:2897–2904; 1994.

    PubMed  CAS  Google Scholar 

  • Raff, M. C.; Fields, K. L.; Hakomori, S.-I.; Mirsky, R.; Pruss, R. M.; Winter, J. Cell type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 174:283–308; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M. C. Subclass of astrocytes in culture: what should we call them? Differentiation and functions of glial cells. New York: Alan R. Liss, Inc.; 1990:17–23.

    Google Scholar 

  • Rothstein, J. D.; Dykes-Hoberg, M.; Pardo, C. A.; Bristol, L. A.; Jin, L.; Kuncl, R.; Kanai, Y.; Hediger, M. A.; Wang, Y.; Schielke, J. P.; Welty, D. F. Knockout of glutamate transporters reveals a major role of astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, J. S.; Van Kammen, M.; Levey, A. I.; Martin, L.; Kuncl, R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38:73–84; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rutka, J. T.; Kleppe-Hoifodt, H.; Emma, D. A.; Giblin, J. R.; Dougherty, D. V.; McCulloch, J. R.; DeArmond, S. J.; Rosenbaum, M. L. Characterisation of normal human brain cultures. Evidence for the outgrowth of leptomeningeal cells. Lab. Invest. 55:71–85; 1986.

    PubMed  CAS  Google Scholar 

  • Rutka, J.; Smith, S. L. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res. 53:3624:3631; 1993.

    PubMed  CAS  Google Scholar 

  • Rutka, J. T.; Hubbard, S. L.; Fukuyama, K.; Matsuzawa, K.; Dirks, P. B.; Becker, L. E. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res. 54:3267–3272; 1994.

    PubMed  CAS  Google Scholar 

  • Ryder, E. F.; Snyder, E. Y.; Cepko, C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 21:356–357; 1989.

    Article  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schousboe, A.; Larsson, O. M.; Drejer, J.; Krogsgaard-Larsen, P.; Hertz, L. Uptake and release processes for glutamine, glutamate and GABA in cultured neurons and astrocytes. New York: Alan R. Liss, Inc., 1983:297–315.

    Google Scholar 

  • Seyfried, T. N.; Yu, R. K. Ganglioside GD3: structure, cellular distribution, and possible function. Mol. Cell. Biochem. 68:3–10; 1985.

    PubMed  CAS  Google Scholar 

  • Shaw, R. Interrelationship between differentiation and malignancy-associated properties in glioma. Br. J. Cancer 49:269–280; 1984.

    PubMed  Google Scholar 

  • Shay, J. W.; Wright, W. E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T antigen. Exp. Cell Res. 184:109–118; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341; 1982.

    PubMed  CAS  Google Scholar 

  • Toda, M.; Miura, M.; Asou, H.; Toya, S.; Uyemura, K. Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection. J. Neurochem. 63:1975–1978; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama, T.; Lee, V. M.-Y.; Rorke, L. B.; Marvin, M.; McKay, R. D. G.; Trojanowski, J. Q. Nestin expression of embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66:303–313; 1992.

    PubMed  CAS  Google Scholar 

  • Tornatore, C.; Baker-Cairns, B.; Yadid, G.; Hamilton, R.; Meyers, K.; Atwood, W.; Cummins, A.; Tanner, V.; Major, E. Expression of tyrosine hydroxylase in an immortalized human fetal astrocyte cell line: in vitro characterization and engraftment into the rodent striatum. Cell Transplant. 5:145–163; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Westphal, M.; Nausch, H.; Herrmann, H.-D. Antigenic staining patterns of human glioma cultures: primary cultures, long-term cultures and cell lines. J. Neurocytol. 19:466–477; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Whittemore, S. R.; Neary, J. T.; Kleitman, N.; Sanon, H. R.; Benigno, A.; Donahue, R. P.; Norenberg, M. D. Isolation and characterisation of conditionally immortalized astrocyte cell lines derived from adult human spinal cord. Glia 10:211–226; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Mayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, T.N.C., Burke, J.F. & Mayne, L.V. A novel human astrocyte cell line (A735) with astrocyte-specific neurotransmitter function. In Vitro Cell.Dev.Biol.-Animal 35, 279–288 (1999). https://doi.org/10.1007/s11626-999-0072-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0072-y

Key words

Navigation