Skip to main content
Log in

Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The differentiation grade of cells in culture is dependent on the composition of the culture medium. Two commonly used myogenic cell lines, mouse C2C12 and rat L6, usually differentiate at a low concentration of horse serum. In this study we compared the effect of horse serum with a medium containing a low percentage of Ultroser G and rat brain extract. The maturation grade was evaluated on the basis of various biochemical, (immuno)histochemical and cell-physiological parameters. Substitution of horse serum by Ultroser G and rat brain extract during the differentiation phase resulted in a higher maturation grade of the myotubes of both cell lines, on the basis of creatine kinase activity and the diameter of the myotubes. In addition, the C2C12 myotubes display cross-striation, contain a higher percentage of creatine kinase muscle-specific isoenzyme MM, show a ninefold increase in acetylcholine receptor (AChR) clusters, form a continuous basement membrane, and have a lower resting cytosolic Ca2+ concentration. L6 myotubes show a fivefold increase in AChR clusters and a twofold increase in the expression of the mRNA of the ɛ-subunit of AChR. C2C12 cells show spontaneous contraction and response of cytosolic Ca2+ to various stimulants in contrast to L6 cells which do not. These studies established that the Ultroser G/brain extract medium leads to a higher differentiation grade of both cell lines, but parameters appropriate for use as differentiation markers appear to differ between both cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airey, J. A.; Baring, M. D.; Sutko, J. L. Ryanodine receptor protein is expressed during differentiation in the muscle cell lines BC3H1 and C2C12. Dev. Biol. 148:365–374; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Askanas, V.; Kwan, H.; Alvarez, R. B.; Engel, W. K.; Kobayashi, T.; Martinuzzi, A.; Hawkins, E. F. De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural-cytochemical studies. J. Neurocytol. 16:523–537; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, A. J.; Head, S. I.; Stephenson, D. G. Time course of calcium transients derived from Fura-2 fluorescence measurements in single fast twitch fibres of adult mice and rat myotubes developing in primary culture. Cell Calcium 21:359–364; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, K. M.; Winder, W. W. Adaptive responses in different types of muscle fibers to endurance exercise. Ann. NY Acad. Sci. 301:411–423; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Baroffio, A.; Bochaton-Piallat, M.-L.; Gabbiani, G.; Bader, C. R. Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59:259–268; 1996.

    Article  Google Scholar 

  • Benders, A. A. G. M.; van Kuppevelt, T. H. M. S. M.; Oosterhof, A.; Veerkamp, J. H. The biochemical and structural maturation of human skeletal muscle cells in culture: the effect of the serum substitute Ultroser G. Exp. Cell Res. 195:284–294; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Benders, A. A. G. M.; Oosterhof, A.; Wevers, R. A.; Veerkamp, J. H. Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca2+ and excitability. Cell Calcium 21:81–91; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Benders, A. A. G. M.; Groenen, P. J. A.; Oerlemans, F. T. J. J.; Veerkamp, J. H.; Wieringa, B. Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells. J. Clin. Invest. 100:1440–1447; 1997b.

    PubMed  CAS  Google Scholar 

  • Brandan, E.; Carey, D. J.; Larrain, J.; Melo, F.; Campos, A. Synthesis and processing of glypican during differentiation of skeletal muscle cells. Eur. J. Cell Biol. 71:170–176; 1996.

    PubMed  CAS  Google Scholar 

  • Buonanno, A.; Mudd, J.; Merlie, J. P. Isolation and characterization of the β and ε subunit genes of mouse muscle acetylcholine receptor. J. Biol. Chem. 264:7611–7616; 1989.

    PubMed  CAS  Google Scholar 

  • Cognard, C.; Constantin, B.; Rivet-Bastide, M.; Raymond, G. Intracellular calcium transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with Indo-1. Cell Calcium 14:333–348; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Edmondson, D. G.; Olson, E. N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640; 1989.

    PubMed  CAS  Google Scholar 

  • Evans, S.; Goldman, D.; Heinemann, S.; Patrick, J. Muscle acetylcholine receptor biosynthesis. J. Biol. Chem. 262:4911–4916; 1987.

    PubMed  CAS  Google Scholar 

  • Fong, P.; Turner, P. R.; Denetclaw, W. F.; Steinhardt, R. A. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer, C.; Sugiyama, J. E.; Taylor, R. G.; Hall, Z. W. Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle. EMBO J. 16:4951–4960; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, A. C.; Fox, E. L.; Merola, A. J. Enzyme adaptations in rat skeletal muscle after two intensities of treadmill training. Med. Sci. Sports Exercise 14:461–466; 1982.

    CAS  Google Scholar 

  • Giovanelli, A.; Grassi, F.; Mattei, E.; Mileo, A. M.; Eusebi, F. Acetylcholine induces voltage-independent increase of cytosolic calcium in mouse myotubes. Proc. Natl. Acad. Sci. USA. 88:10069–10073; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Grassi, F.; Fucile, S.; Eusebi, F. Ca2+ signaling pathways activated by acetylcholine in mouse C2C12 myotubes. Pflügers Arch. 428:340–345; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Groffen, A. J.; Ruegg, M. A.; Dijkman, H.; Van der Velden, T. J.; Buskens, C. A.; Van den Born, J.; Assmann, K. J.; Monnens, L. A.; Veerkamp, J. H.; Van den Heuvel, L. P. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem. 46:19–28; 1998.

    PubMed  CAS  Google Scholar 

  • Grouselle, M.; Koenig J.; Lascombe, M.-L.; Chapron, J.; Méléard, P.; Georgescauld, D. Fura-2 imaging of spontaneous and electrically induced oscillations of intracellular free Ca2+ in rat myotubes. Pflügers Arch. 418:40–50; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Grynckiewicz, G.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450; 1985.

    Google Scholar 

  • Gu, W.; Schneider, J. W.; Condorelli, G.; Kaushal, S.; Mahdavi, V.; Nadal-Ginard, B. Interaction of myogenic factors and the retinoblastoma protein mediated muscle cell commitment and differentiation. Cell 72:309–324; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hall, Z. W.; Sanes, J. R. Synaptic structure and development: the neuromuscular junction. Cell/Neuron 72/10:99–121; 1993.

    Google Scholar 

  • Inestrosa, N. C.; Miller, J. B.; Silberstein, L.; Ziskind-Conhaim, L.; Hall, Z. W. Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp. Cell Res. 147:393–405; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Isenberg, K. E.; Mudd, J.; Shah, V.; Merlie, J. P. Nucleotide sequence of the mouse muscle nicotinic acetylcholine receptor α subunit. Nucleic Acid Res. 14:5111; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, A. E. M.; Oosterhof, A.; Veerkamp, J. H. Palmitate oxidation and some enzymes of energy metabolism in human muscles and cultured muscle cells. Int. J. Biochem. 19:1049–1054; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, A. E. M.; Benders, A. A. G. M.; Oosterhof, A.; Veerkamp, J. H. Effects of growth medium, electrical stimulation and paralysis on various enzymes activities in cultured rat muscle cells. Comparison with activities in rat muscles in vivo. Int. J. Biochem. 24:751–758; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jaimovich, E.; Rojas, E. Intracellular Ca2+ transients induced by high external K+ and tetracaine in cultured rat myotubes. Cell Calcium 15:356–368; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Klip, A.; Marette, A. Acute and chronic signals controlling glucose transport in skeletal muscle. J. Cell. Biochem. 48:51–60; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kostrominova, T. Y.; Tanzer, M. L. Temporal and spatial appearance of α-dystroglycan in differentiated mouse myoblasts in culture. J. Cell Biochem. 58:527–534; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kroll, T. G.; Peters, B. P.; Marziasz Hustad, C.; Jones, P. A.; Killen, P. D.; Ruddon, R. W. Expression of laminin chains during myogenic differentiation. J. Biol. Chem. 269:9270–9277; 1994.

    PubMed  CAS  Google Scholar 

  • Larrian, J.; Alvarez, J.; Hassell, J. R.; Brandan, E. Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation. Exp. Cell Res. 234:405–412; 1997a.

    Article  Google Scholar 

  • Larrian, J.; Cizmeci-Smith, G.; Troncoso, V.; Stahl, R. C.; Carey, D. J.; Brandan, E. Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J. Biol. Chem. 272:18418–18424; 1997b.

    Article  Google Scholar 

  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Martinou, J.-C.; Merlie, J. P. Nerve-dependent modulation of acetylcholine receptor ε-subunit gene expression. J. Neurosci. 11:1291–1299; 1991.

    PubMed  CAS  Google Scholar 

  • McMahan, U. J.; Wallace, B. G. Molecules in basal lamina that direct the formation of synaptic specialization at neuromuscular junctions. Dev. Neurosci. 11:227–247; 1989.

    PubMed  CAS  Google Scholar 

  • Passaquin, A.-C.; Bouri, K.; Metzinger, L.; Coupin, G.; Warter, J.-M.; Poindron, P. Differentiation of C2 skeletal muscle cells is enhanced by α-methylprednisolone. Int. J. Immunol. Pharmacol. 7:37–45; 1994.

    CAS  Google Scholar 

  • Peng, H. B.; Baker, L. P.; Chen, Q. Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor. Neuron 6:237–246; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pinset, C.; Mulle, L.; Benoit, P.; Chaungeux, J. P.; Chelly, J.; Gros, G.; Montarras, D. Functional adult acetylcholine receptor develops independently of motor innervation in Sol 8 mouse muscle cell line. EMBO J. 10:2411–2418; 1991.

    PubMed  CAS  Google Scholar 

  • Puissant, C.; Houdebine, L. M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques 8:148–150; 1990.

    PubMed  CAS  Google Scholar 

  • Reist, N. E.; Werle, M. J.; McMahan, U. J. Agrin-released by motor neurons induces the aggregation of acetylcholine receptors at the rat neuromuscular junction. Neuron 8:865–868.

  • Ruegg, M. A.; Bixby, J. L. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci. 21:22–27; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J. R.; Feldman, D. H.; Cheney, J. M.; Lawrence, J. C. Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J. Neurosci. 4:464–473; 1984.

    PubMed  CAS  Google Scholar 

  • Shepherd, D.; Garland, P. B. Citrate synthase from rat liver. Methods Enzymol. 13:11–16; 1969.

    Article  CAS  Google Scholar 

  • Shepherd, D.; Brehm, P. Adult forms of nicotinic acetylcholine receptors are expressed in the absence of nerve during differentiation of a mouse skeletal muscle cell line. Dev. Biol. 162:549–557; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, K.; Benders, A.; Oerlemans, F.; de Haan, A.; Heerschap, A.; Ruitenbeek, W.; Jost, C.; van Deursen, J.; Perryman, B.; Pette, D.; Bruckwilder, M.; Koudijs, J.; Jap, P.; Veerkamp, J.; Wieringa, B. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:93–103; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, J. E.; Glass, D. J.; Yancopoulos, G. D.; Hall, Z. W. Laminin-induced acetylcholine receptor clustering: an alternative pathway. J. Cell Biol. 1:181–191; 1997.

    Article  Google Scholar 

  • Thinakaran, G.; Ojala, J.; Bag, J. Expression of c-jun/AP-1 during myogenic differentiation in mouse C2C12 myoblasts. FEBS Lett. 319:271–276; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel, L. P. W. J.; van den Born, J.; van de Velden, T. J. A. M.; Veerkamp, J. H.; Monnens, L. A. H.; Schröder, C. H.; Berden, J. H. M. Isolation and partial characterization of heparan sulphate proteoglycan from the human glomerular basement membrane. Biochem. J. 264:457–465; 1989.

    PubMed  Google Scholar 

  • Van Kuppevelt, T. H. M. S. M.; Benders, A. A. G. M.; Versteeg, E. M. M.; Veerkamp, J. H. Ultroser G and brain extract induce a continuous basement membrane with specific synaptic elements in aneurally cultured human skeletal muscle cells. Exp. Cell Res. 200:306–315; 1992.

    Article  PubMed  Google Scholar 

  • Whitson, P. A.; Stuart, C. A.; Huls, M. H.; Sams, C. F.; Cintron, N. M. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells. J. Cell. Physiol. 140:8–17; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, N.; Yoshida, S.; Koishi, K.; Masuda, K.; Nabeshima, Y. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J. Cell Sci. 111:769–779; 1998.

    PubMed  CAS  Google Scholar 

  • Yu, L.; LaPolla, R. J.; Davidson, N. Mouse muscle nicotinic acetylcholine receptor γ subunit: cDNA sequence and gene expression. Nucleic Acid Res. 14:3539–3555; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Zuurveld, J. G. E. M.; Oosterhof, A.; Veerkamp, J. H.; Van Moerkerk, H. T. B. Oxidative metabolism of cultured human skeletal muscle in comparison with biopsy material. Biochim. Biophys. Acta 844:1–8; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portiér, G.L., Benders, A.A.G.M., Oosterhof, A. et al. Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cell.Dev.Biol.-Animal 35, 219–227 (1999). https://doi.org/10.1007/s11626-999-0030-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0030-8

Key words

Navigation