Skip to main content
Log in

The presence of transcription factors in fetal bovine sera

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Three sources of fetal bovine serum (FBS) were fractionated by ammonium sulfate precipitation and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to Immobilon-P membranes, immunoblotted with a panel of transcription factor antibodies, and detected by enhanced chemiluminescence. Nine transcription factors were detected—ATF-2, SRE-ZBP, GATA-2, TFIID, Ets-1/Ets-2, E2F-1, Oct-2, p53, and AP-2; four transcription factors were not detected—Myo D, CREB, Sp2, and Wilms’ tumor. The results indicated the presence of varying amounts of several transcription factors in three commercial sources and may represent heretofore unrecognized factors influencing cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attar, R. M.; Gilman, M. Z. Expression cloning of a novel zinc finger protein that binds to the c-fos serum response element. Mol. Cell. Biol. 12:2432–2443; 1992.

    PubMed  CAS  Google Scholar 

  2. Baeuerle, P. A. Transcriptional activators. Enter a polypeptide messenger. Nature 373:661–662; 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Bjare, U. Serum-free culture. Pharmacol. Ther. 53:355–374; 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Caamano, J.; Ruggeri, B.; Momiki, S., et al. Detection of p53 in primary lung tumors and nonsmall cell lung carcinoma cell lines. Am. J. Pathol. 139:839–845; 1991.

    PubMed  CAS  Google Scholar 

  5. Dorn, A.; Affolter, M.; Gehring, W. J., et al. Homeodomain proteins in development and therapy. Pharmacol. Ther. 61:155–184; 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Follette, P. J.; O’Farrell, P. H. Connecting cell behavior to patterning: lessons from the cell cycle. Cell 88:309–314; 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Jakoby, W. B.; Pastan, L. H., ed. Methods in enzymology. Volume 58. San Diego: Academic Press; 1979:43–93.

    Google Scholar 

  8. Harris, C. C.; Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329:1318–1327; 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Hassapoglidou, S.; Diamandis, E. P.; Sutherland, D. J. Quantification of p53 protein in tumor cell lines, breast tissue extracts and serum with time-resolved immunofluorometry. Oncogene 8:1501–1509; 1993.

    PubMed  CAS  Google Scholar 

  10. He, J.; Furmanski, P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724; 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman, A.; Sinn, E.; Yamamoto, T., et al. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346:387–390; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Huber, H. E.; Edwards, G.; Goodhart, P. J., et al. Transcription factor E2F binds DNA as a heterodimer. Proc. Natl. Acad. Sci. USA 90:3525–3529; 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Jayme, D. W.; Blackman, K. E. Culture media for propagation of mammalian cells, viruses, and other biologicals. Adv. Biotechnol. Proc. 5:1–30; 1985.

    CAS  Google Scholar 

  14. Kim, S.-J.; Wagner, S.; Liu, F., et al. Retinoblastoma gene product activates expression of the human TGF-beta 2 gene through transcription factor ATF-2. Nature 358:331–334; 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Knepper, P. A.; Mayanil, C. S. K.; Byrne, R. W., et al. Pax 3 transcription factor binds to hyaluronan. Investig. Ophthalmol. Vis. Sci. (Suppl.) 36:S127; 1995.

    Google Scholar 

  16. Knepper, P. A.; Mayanil, C. S. K.; Guzelbag, E., et al. Transcription factors are present in avian yolk and albumin. Dev. Biol. 175:382; 1996.

    Google Scholar 

  17. Lai, J. S.; Herr, W. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89:6958–6962; 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Latchman, D. S. What regulates the regulators. Latchman, D. S., ed. Eukaryotic transcription factors. San Diego: Academic Press; 1995:279–313.

    Google Scholar 

  19. Levine, A. J.; Momand, J.; Finlay, C. A. The p53 tumour suppressor gene. Nature 351:453–456; 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, M.; Dhanwada, K. R.; Birt, D. F., et al. Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15:1809–1892; 1994.

    Google Scholar 

  21. Lukas, R.; Wills, J.; Davis, E., et al. Transcription factors are present in rabbit aqueous fluid. Investig. Ophthalmol. Vis. Sci. (Suppl.) 38:S1128; 1997.

    Google Scholar 

  22. Nicolas, R. H.; Goodwin, G. H. Purification and cloning of transcription factors. Latchman, D. S., ed. Transcription factors, a practical approach. Oxford: IRL Press; 1993:81–104.

    Google Scholar 

  23. Pognonec, P.; Boulukos, K. E.; Gesquiere, J. C., et al. Mitogenic stimulation of thymocytes results in the calcium-dependent phosphorylation of c-ets-1 proteins. EMBO 7:977–983; 1988.

    CAS  Google Scholar 

  24. Prochiantz, A.; Theodore, L. Nuclear/growth factors. Bioessays 17:39–44; 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Rana, B.; Mischoulon, D.; Xie, Y., et al. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors. Mol. Cell. Biol. 14:5858–5869; 1994.

    PubMed  CAS  Google Scholar 

  26. Schmidt, A. M.; Hori, O.; Cao, R., et al. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 Suppl. 3:S77–80; 1996.

    PubMed  CAS  Google Scholar 

  27. Tansey, W. P.; Herr, W. TAFs: guilt by association? Cell 88:729–732; 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Towatari, M.; May, G. E.; Marias, R., et al. Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3. J. Biol. Chem. 270:4101–4107; 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Williams, T.; Tjian, R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 5:670–682; 1991.

    PubMed  CAS  Google Scholar 

  30. Wilmut, I.; Schnieke, A. E.; McWhir, J., et al. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knepper, P.A., Mayanil, C.S., Goossens, W. et al. The presence of transcription factors in fetal bovine sera. In Vitro Cell.Dev.Biol.-Animal 34, 170–173 (1998). https://doi.org/10.1007/s11626-998-0101-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0101-2

Key words

Navigation