Skip to main content

Advertisement

Log in

Isolation and characterization of a novel bladder cancer cell line: Inhibition by epidermal growth factor

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A novel continuous cell line, designated BC3c, was established from a surgical biopsy of an invasive solid transitional cell carcinoma of the bladder derived from an 82-yr-old Caucasian female. BC3c cells were near-triploid bearing multiple structural and numerical chromosome anomalies. The epithelial origin of the cancer cells was indicated by the expression of cytokeratins 8 and 19 as well as by the absence of mesenchymal markers. Polymerase chain reaction-restriction-fragment length polymorphisms and single-strand conformation polymorphism mutation detection assays did not reveal any mutations in H-ras codon 12 and K-ras codons 12 and 13. In addition, no mutation in specific hot-spot codons of the p53 gene and no accumulation of the p53 protein were observed. BC3c cells grew rapidly in vitro, even in the absence of exogenous growth factors, because they were found to stimulate their growth in an autocrine manner. BC3c cells were found to express the epidermal growth factor-receptor (EGF-r) abundantly, but in contrast to other established bladder cancer cell lines, human recombinant epidermal growth factor inhibited the cells’ proliferation in vitro. These features render the newly established bladder cancer cell line BC3c a useful tool for further experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, M. S.; Greenfield, C.; Gullick, W. J., et al. Evaluation of epidermal growth factor receptors in bladder tumours. Br. J. Cancer 56:533–537; 1987.

    PubMed  CAS  Google Scholar 

  • Browder, T. M.; Dunbar, C. E.; Nienhuis, A. W. Private and public autocrine loops in neoplastic cells. Cancer Cells 1:9–17; 1989.

    PubMed  CAS  Google Scholar 

  • Chen, P.-H.; Lin, S.-Y.; Wang, C.-K., et al. “Hot spots” mutation analysis of p53 gene in gastrointestinal cancers by amplification of naturally occurring and artificially created restriction sites. Clin. Chem. 39:2186–2191; 1993.

    PubMed  CAS  Google Scholar 

  • Czerniak, B.; Deitch, D.; Simmons, H., et al. Ha-ras gene codon 12 mutation and DNA ploidy in urinary bladder carcinoma. Br. J. Cancer 62:762–763; 1990.

    PubMed  CAS  Google Scholar 

  • Dangles, V.; Femenia, F.; Laine, V., et al. Two- and three-dimensional cell structures govern epidermal growth factor survival function in human bladder carcinoma cell lines. Cancer Res. 57:3360–3364; 1997.

    PubMed  CAS  Google Scholar 

  • Dubeau, L.; Jones, P. A. Growth of normal and neoplastic urothelium and response to epidermal growth factor in a defined serum-free medium. Cancer Res. 47:2107–2112; 1987.

    PubMed  CAS  Google Scholar 

  • Fujimoto, K.; Yamada, Y.; Okajima, E., et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res. 52:1393–1398; 1992.

    PubMed  CAS  Google Scholar 

  • Gleave, M. E.; Hsieh, J.-T.; Wu, H.-C., et al. Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma. Cancer Res. 53:5300–5307; 1993.

    PubMed  CAS  Google Scholar 

  • Grimm, M.-O.; Jurgens, B.; Schulz, W. A., et al. Inactivation of tumor suppressor genes and deregulation of the c-myc gene in urothelial cancer cell lines. Urol. Res. 23:293–300; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Heim, S.; Mittelman, F. Cancer cytogenetics, 2nd ed. New York: Alan R. Liss; 1995:1–32; 358–368.

    Google Scholar 

  • I.S.C.N. An international system for human cytogenetic nomenclature. Mitelman, F., ed. Basel: S. Karger; 1995.

    Google Scholar 

  • Jakus, J.; Yeudall, W. A. Growth inhibitory concentrations of EGF induce p21 (WAF1/Cip1) and alter cell cycle control in squamous carcinoma cells. Oncogene 12:2369–2376; 1996.

    PubMed  CAS  Google Scholar 

  • King, E. D.; Matteson, J.; Jacobs, S. C., et al. Incidence of apoptosis, cell proliferation and bcl-2 expression in transitional cell carcinoma of the bladder: association with tumor progression. J. Urol. 155:316–320; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, M. A.; Williamson, M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res. 53:133–139; 1993.

    PubMed  CAS  Google Scholar 

  • Li, Y.; White, R. Suppression of a human colon cancer cell line by introduction of an exogenous NF1 gene. Cancer Res. 56:2872–2876; 1996.

    PubMed  CAS  Google Scholar 

  • Lin, C.-W.; Lin, J. C.; Prout, G. R., Jr. Establishment and characterization of four human bladder tumor cell lines and sublines with different degrees of malignancy. Cancer Res. 45:5070–5079; 1985.

    PubMed  CAS  Google Scholar 

  • Masters, J. R. W.; Hepburn, P. J.; Walker, L., et al. Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res. 46:3630–3636; 1986.

    PubMed  CAS  Google Scholar 

  • Mellon, J. K.; Cook, S.; Chambers, P., et al. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor. Br. J. Cancer 73:654–658; 1996.

    PubMed  CAS  Google Scholar 

  • Merlino, G. T.; Xu, Y.-H.; Ishii, S., et al. Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science 224:417–419; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Messing, E. M.; Fahey, J. L.; Dekernion, J. B., et al. Serum-free medium for the in vitro growth of normal and malignant urinary bladder epithelial cells. Cancer Res. 42:2392–2397; 1982.

    PubMed  CAS  Google Scholar 

  • Messing, E. M.; Reznikoff, C. A. Normal and malignant human urothelium: in vitro effects of epidermal growth factor. Cancer Res. 47:2230–2235; 1987.

    PubMed  CAS  Google Scholar 

  • Mitchell, C. E.; Belinsky, S. A.; Lechner, J. F. Detection and quantitation of mutant K-ras codon 12 restriction fragments by capillary electrophoresis. Anal. Biochem. 224:148–153; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Moll, R.; Franke, W. W.; Schiller, D. L., et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Nakopoulou, L.; Zervas, A.; Constantinides, C., et al. Epithelial differentiation antigens and epidermal growth factor receptors in transitional cell bladder carcinoma: correlation with prognosis. Urol. Int. 54:191–197; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Neal, D. E.; Marsh, C.; Bennett, M. K., et al. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet I:366–368; 1985.

    Article  Google Scholar 

  • Neal, D. E.; Sharples, L.; Smith, K., et al. The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer 65:1619–1625; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Pathak, S. Chromosome banding techniques. J. Reprod. Med. 17:25–28; 1976.

    PubMed  CAS  Google Scholar 

  • Pratsinis, H.; Kletsas, D.; Stathakos, D. Autocrine growth regulation in fetal and adult human fibroblasts. Biochem. Biophys. Res. Commun. 237:348–353; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Raghavan, D.; Shipley, W. U.; Garnick, M. B., et al. The biology and management of bladder cancer. N. Engl. J. Med. 322:1129–1138; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Real, F. X.; Rettig, W. J.; Chesa, P. G., et al. Expression of epidermal growth factor receptor in human cultured cells and tissues: relationship to cell lineage and stage of differentiation. Cancer Res. 46:4726–4731; 1986.

    PubMed  CAS  Google Scholar 

  • Rieger, K. M.; Little, A. F.; Swart, J. M., et al. Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression. Br. J. Cancer 72:683–690; 1995.

    PubMed  CAS  Google Scholar 

  • Rodrigues, N. R.; Rowan, A.; Smith, M. E. F., et al. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 87:7555–7559; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P. J.; Jelbart, M.; Wills, E., et al. Establishment and characterization of a new human bladder cancer cell line showing features of squamous and glandular differentiation. Int. J. Cancer 41:74–82; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P. J.; Brown, J. L.; Grimmond, S. M., et al. Molecular biology of urological tumours. Br. J. Urol. 65:121–130; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P. J.; Palavidis, Z.; Rozinova, E., et al. Characterization of a new human bladder cancer cell line, UCRU-BL-28. J. Urol. 150:1038–1044; 1993.

    PubMed  CAS  Google Scholar 

  • Saetta, A.; Lazaris, A. C.; Davaris, P. S. Detection of ras oncogene point mutations and simultaneous proliferative fraction estimation in gall-bladder cancer. Pathol. Res. Pract. 192:532–540; 1996.

    PubMed  CAS  Google Scholar 

  • Sandberg, A. A. The chromosomes in human cancer and leukemia, 2nd ed. New York: Elsevier Scientific Publishers; 1990.

    Google Scholar 

  • Sandberg, A. A.; Berger, C. S. Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer. J. Urol. 151:545–560; 1994.

    PubMed  CAS  Google Scholar 

  • Sauter, G.; Haley, J.; Chew, K., et al. Epidermal-growth-factor-receptor expression is associated with rapid tumor proliferation in bladder cancer. Int. J. Cancer 57:508–514; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sidransky, D.; Von Eschenbach, A.; Tsai, Y. C., et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–709; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M. B.; Roberts, A. B. Autocrine secretion—10 years later. Ann. Intern. Med. 117:408–414; 1992.

    PubMed  CAS  Google Scholar 

  • Taparowsky, E.; Suard, Y.; Fasano, O., et al. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Turkus, M.; Powell, I.; Fakr, W. Cytogenetic studies of the bladder: prognostic implications. J. Urol. 148:44–46; 1992.

    Google Scholar 

  • van der Bosch, J.; Ruller, S.; Horn, D., et al. Density-dependent tumor cell death and reversible cell cycle arrest: mutually exclusive models of monocyte-mediated growth control. Exp. Cell Res. 187:185–192; 1990.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratsinis, H., Saetta, A., Gagos, S. et al. Isolation and characterization of a novel bladder cancer cell line: Inhibition by epidermal growth factor. In Vitro Cell.Dev.Biol.-Animal 34, 722–728 (1998). https://doi.org/10.1007/s11626-998-0068-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0068-z

Key words

Navigation