Skip to main content
Log in

Immortalized mouse brain endothelial cells are ultrastructurally similar to endothelial cells and respond to astrocyte-conditioned medium

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Studies of brain microvessel endothelial cell physiology and blood-brain barrier properties are often hampered by the requirement of repeatedly producing and characterizing primary endothelial cell cultures. The use of viral oncogenes to produce several immortalized brain microvessel cell lines has been reported. The resulting cell lines express many properties of the blood-brain barrier phenotype but do not completely mimic primary endothelial cells in culture. As immortalized brain microvessel endothelial cell lines have not yet been produced from mice, we transformed mouse brain endothelial cells with the adenovirus E1A gene using a retroviral vector (DOL). Eight of 11 clones produced exhibited an endothelial-like cobblestone morphology and were characterized as endothelial with a panel of antibodies, lectins, and ultrastructural criteria. These cells are endothelial in origin and share ultrastructural features with primary cultures of endothelial cells. Examination of freeze fracture and transmission electron micrographs show adherens junctions exist between the transformed cells, and culture in astrocyte-conditioned medium induces the formation of gap junctions. This is one indication that responses to astrocyte-derived factors are retained by the transformed cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, N. J.; Couraud, P.-O.; Roux, F., et al. Studies on an immortalized brain endothelial cell line; characterization, permeability and transport. In: Greenwood, J.; Begley, D. J.; Segal, M. B., ed. New concepts of a blood-brain barrier. New York: Plenum Press; 1995:239–249.

    Google Scholar 

  2. Abbott, N. J.; Hughes, C. C. W.; Revest, P. A., et al. Development and characterization of rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J. Cell Sci. 103:23–37; 1992.

    PubMed  CAS  Google Scholar 

  3. Albelda, S. M.; Muller, W. A.; Buck, C. A., et al. Molecular and cellular properties of PECAM-1 (endoCAM/CD31); a novel vascular cell-cell adhesion molecule. J. Cell Biol. 114:11059–11068; 1991.

    Article  Google Scholar 

  4. Arthur, F.; Shivers, R. R.; Bowman, P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev. Brain Res. 36:155–159; 1987.

    Article  Google Scholar 

  5. Ayalon, O.; Sabanai, H.; Lampugnani, M., et al. Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells. J. Cell Biol. 126:247–258; 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Beck, D.; Vinters, H.; Hart, M., et al. Glial cells influence polarity of the blood-brain barrier. J. Neuropath. Exp. Neurol. 43:219–224; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Bowman, P. D.; Betz, A. L.; Ar, D., et al. Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Castellot, J. J.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J. Cell Biol. 90:372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Cone, R. D.; Grodzicker, T.; Jaramillo, M. A retrovirus expressing the 12S adenoviral E1A gene product can immortalize epithelial cells from a broad range of rat tissues. Mol. Cell Biol. 8:1036–1044; 1988.

    PubMed  CAS  Google Scholar 

  10. Dejana, E.; Corada, M.; Lampugnani, G. Endothelial cell-to-cell junctions. FASEB J. 9:910–918; 1995.

    PubMed  CAS  Google Scholar 

  11. Dropulic, B.; Masters, C. Culture of mouse brain capillary endothelial cell lines that express factor VIII, g-glutamyl transpeptidase, and form junctional complexes in vitro. In Vitro Cell. Dev. Biol. 23:775–781; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Durieu-Trautmann, O.; Foignant-Chaverot, N.; Perdomo, J., et al. Immortalization of brain capillary endothelial cells with maintenance of structural characteristics of the blood-brain barrier endothelium. In Vitro Cell. Dev. Biol. 27A:771–778; 1991.

    PubMed  CAS  Google Scholar 

  13. Greenwood, J.; Pryce, G.; Devine, L., et al. SV40 large T immortalized cell lines of the rat blood-brain and blood-retinal barriers retain phenotypic and immunological characteristics. J. Neuroimmunol. 71:51–63; 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Hewett, P. W.; Murray, J. C. Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell. Dev. Biol. 29A:823–830; 1993.

    CAS  Google Scholar 

  15. Hurst, R. D.; Fritz, I. B. Properties of an immortalized vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J. Cell Physiol. 167:81–88; 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Joo, F. The cerebral microvessels in culture, an update. J. Neurochem. 58:1–17; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Korman, A. J.; Frantz, J. D.; Strominger, J. L., et al. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc. Natl. Acad. Sci. 84:2150–2154; 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Larson, D. M.; Carson, M. P.; Haudenshild, C. C. Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc. Res. 34:184–199; 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Lechardeur, D.; Scherman, D.; Schwartz, B. Development and characterization of cellular models of the blood-brain barrier. S. T. P. Pharma. Sci. 7:5–11; 1997.

    CAS  Google Scholar 

  20. Lechardeur, D.; Schwartz, B.; Paulin, D., et al. Induction of blood-brain barrier differentiation in a rat brain-derived endothelial cell line. Exp. Cell Res. 220:161–170; 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Madara, J.; Dharmsathaphorn, K. Occluding junction structure-function relationships in cultured epithelial monolayer. J. Cell Biol. 101:2124–2133; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Mallampalli, R. K.; Floerchinger, C. S.; Hunninghake, G. W. Isolation and immortalization of rat pre-type II cell lines. In Vitro Cell. Dev. Biol. 28A:181–187; 1992.

    PubMed  CAS  Google Scholar 

  23. Muruganandam, A.; Herx, L. M.; Monette, R., et al. Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J. 11:1187–1197; 1997.

    PubMed  CAS  Google Scholar 

  24. Newman, P. J. The role of PECAM-1 in vascular cell biology. Ann. NY Acad. Sci. 714:165–174; 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Pauli, B. U.; Weinstein, R. S.; Soble, L. W., et al. Freeze-fracture of monolayer cultures. J. Cell Biol. 72:763–769; 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Raub, T. J.; Kuentzel, S. L.; Sawada, G. A. Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp. Cell Res. 199:330–340; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Reynolds, E. S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208–215; 1963.

    Article  PubMed  CAS  Google Scholar 

  28. Roux, F.; Durieu-Trautmann, O.; Chaverot, N., et al. Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell Physiol. 159:101–113; 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Rubin, L. L.; Hall, D. E.; Porter, S., et al. A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1735; 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Schneeberger, E. E.; Lynch, R. D. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262:L647-L661; 1992.

    PubMed  CAS  Google Scholar 

  31. Shivers, R.; Bowman, P. A freeze-fracture paradigm of the mechanism for delivery and insertion of gap junction particles into the plasma membrane. J. Submicrosc. Cytol. 17:199–203; 1985.

    PubMed  CAS  Google Scholar 

  32. Shivers, R.; Bowman, P.; Martin, K. A model for de novo synthesis and assembly of tight intercellular junctions. Ultrastructural correlates and experimental verification of the model revealed by freeze-fracture. Tissue Cell 17:417–440; 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Shivers, R. R.; Arthur, F. E.; Bowman, P. D. Induction of gap junctions and brain endothelium-like tight junctions in cultured bovine endothelial cells: local control of cell specialization. J. Submicrosc. Cytol. Pathol. 20:1–14; 1988.

    PubMed  CAS  Google Scholar 

  34. Shivers, R. R.; Brightman, M. W. Trans-glial channels of crayfish ventral nerve roots in freeze fracture. J. Comp. Neurol. 167:1–26; 1976.

    Article  PubMed  CAS  Google Scholar 

  35. Stins, M. F.; Prasadarao, N. V.; Zhou, J., et al. Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease [letter]. In Vitro Cell. Dev. Biol. 33A:243–247; 1997.

    Google Scholar 

  36. Tagami, M.; Yamagata, K.; Fujino, H., et al. Morphological differentiation of endothelial cells co-cultured with astrocytes on type-I or type-IV collagen. Cell Tissue Res. 268:225–232; 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Teifel, M.; Friedl, P. Establishment of the permanent microvascular endothelial cell line PBMEC/C1-2 from porcine brains. Exp. Cell Res. 228:50–57; 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2073; 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Wolburg, H.; Neuhaus, J.; Kniesel, U., et al. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:1347–1357; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijsman, J.A., Shivers, R.R. Immortalized mouse brain endothelial cells are ultrastructurally similar to endothelial cells and respond to astrocyte-conditioned medium. In Vitro Cell.Dev.Biol.-Animal 34, 777–784 (1998). https://doi.org/10.1007/s11626-998-0032-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0032-y

Key words

Navigation