Skip to main content
Log in

A fluorometric assay for the measurement of endothelial cell density in vitro

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A fluorometric assay for determining endothelial cell numbers based on the endogenous enzyme acid phosphatase is described. In preliminary studies, three substrates—p-nitrophenyl phosphate, 4-methylumbelliferyl phosphate, and 2′-[2-benzthiazoyl]-6′-hydroxy-benthiazole phosphate (AttoPhos™)—were compared with respect to their kinetic, optimum assay conditions, sensitivity, and detection limits. Only AttoPhos™ was found to have a high degree of sensitivity, reliability, and reproducibility for measuring both high and low cell numbers in the same plate. In subsequent experiments, assay conditions were validated for measuring endothelial cell density in response to basic fibroblast growth factor and fumagillin. Furthermore, the AttoPhos™ assay revealed a linear correlation between acid phosphatase activity and cell number in many cell types, including BALB/3T3, CHO-K1, A431, MCF7, 2008, SK-OV-3, T47-D, and OVCAR-3. This assay is potentially valuable for use in many in vitro systems in which the quantitation of cell density and proliferation is necessary. The practical advantages of AttoPhos™ assay for measuring endothelial cell numbers include (1) nonradioactivity, (2) simplicity, (3) economy, (4) speed of assessment of proliferation of large number of samples, and (5) amenability to high-throughput drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, C. J.; Storrie, B. A simple DNA-dependent fluorescence enhancement assay for cell number. J. Histochem. Cytochem. 29:326–328; 1981.

    PubMed  CAS  Google Scholar 

  2. Baumgarten, H. J. A simple microplate assay for the determination of cellular protein. J. Immunol. Methods 82:25–37; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bergmeyer, H. U.; Grabl, M.; Walter, H. E. In: Bergmeyer, H. U., ed. Methods of enzymatic analysis. 3rd ed., Vol. II. Deerfield Beach, FL: Verlag Chemie; 1983:269–270.

    Google Scholar 

  4. Borenfreund, E.; Puerner, J. A. Toxicity determined in vitro by morphological alterations and neural red absorption. Toxicol. Lett. 24:119–124; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Bozyczko-Coyne, D.; McKenna, B. W.; Connors, T. J.; Neff, N. T. A rapid fluorometric assay to measure neuronal survival in vitro. J. Neurosci. Methods 50:205–216; 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Chambers, T. J.; Fuller, K.; Darby, J. A. Hormonal regulation of acid phosphatase release by osteoclast disaggregated from neonatal rat bone. J. Cell Physiol. 132:90–96; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Connolly, D. T.; Knight, M. B.; Harakas, N. K.; Wittwer, A. J.; Feder, J. Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal. Biochem. 152:136–140; 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Crouch, S. P. M.; Kozlowski, R.; Slater, K. J.; Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160:81–88; 1993.

    Article  PubMed  CAS  Google Scholar 

  9. de Fries, R.; Mitsuhashi, M. Quantitation of mitogen induced human lymphocyte proliferation: comparison of Alamar Blue™ assay to 3H-thymidine assay. J. Clin. Lab. Anal. 9:89–95; 1995.

    Article  PubMed  Google Scholar 

  10. Dionne, F. T.; Chevalier, S.; Bleau, G.; Roberts, K. D.; Chapdelanine, A. Induction of acid phosphatase synthesis in canine prostatic epithelial cells in vitro. Mol. Cell. Endocrinol. 33:113–126; 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Dotsika, E. N.; Sanderson, C. J. A fluorometric assay for determining cell growth in lymphocyte proliferation and lymphokine assays. J. Immunol. Methods 105:55–62; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Gillies, R. I.; Didier, N.; Denton, M. Determination of cell numbers in monolayer cultures. Anal. Biochem. 159:109–113; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Goodwin, C. J.; Holt, S. J.; Downes, S.; Marshall, N. J. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XXT and MTS. J. Immunol. Methods 179:95–103; 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Hirt, A.; Wagner, H. P. Nuclear incorporation of radioactive DNA precursors and progression of cells through S. Combined radioautographic and cytophotometric studies on normal and leukaemic bone marrow and thoracic duct lymph cells of man. Cell Tissue Kinet. 8:455–466; 1975.

    PubMed  CAS  Google Scholar 

  15. Huschtscha, L. I.; Lucibello, F. C. A rapid micro method for counting cells “in situ” a fluorogenic alkaline phosphatase enzyme assay. In Vitro Cell. Dev. Biol. 25:105–107; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Kerkhof, L. A comparison of substrates for quantifying the signal from a nonradioactive DNA probe. Anal. Biochem. 205:359–364; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Kull, F. C.; Cuatrecasas, P. Estimation of cell number by neutral red content. Application for proliferative and survival assays. Appl. Biochem. Biotechnol. 8:97–103; 1983.

    PubMed  Google Scholar 

  18. Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470). Br. J. Cancer 69:212–216; 1994.

    PubMed  CAS  Google Scholar 

  19. Laughton, C. Quantitation of attached cells in microtiter plates based on Coomassie brilliant blue G-250 staining of total cellular protein. Anal. Biochem. 140:417–423; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Lewinsohn, D. M.; Nickoloff, B. J.; Butcher, E. C. A fluorometric approach to the quantitation of cell number with application to cell adhesion assay. J. Immunol. Methods 110:93–100; 1988.

    Article  PubMed  CAS  Google Scholar 

  21. McCaffrey, T. A.; Agarwal, L. A.; Weksler, B. B. A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. In Vitro Cell. Dev. Biol. 24:247–252; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:5563; 1983.

    Article  Google Scholar 

  23. Nakayama, G. R.; Caton, M. C.; Nova, M. P.; Parandoosh, Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J. Immunol. Methods 204:205–208; 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Pagè, B.; Pagè, M.; Noël, C. A new fluorometric assay for cytotoxicity measurement in vitro. Int. J. Oncol. 3:473–476; 1993.

    Google Scholar 

  25. Pagliacci, M. C.; Spinozzi, F.; Migliorati, G.; Fumi, G.; Smacchia, F.; Gringnani, F.; Riccardi, C.; Nicoletti, I. Genistein inhibits tumor cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur. J. Cancer 29A:1573–1577; 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Pignatelli, M.; Bodmer, W. F. Genetics and biochemistry of collagen binding-triggered glandular differentiation in a human colon carcinoma cell line. Proc. Natl. Acad. Sci. USA 85:5561–5565; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Porstmann, T.; Ternynck, T.; Avrameas, S. Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J. Immunol. Methods 82:169–179; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Richards, W. L.; Son, M. K.; Krutzsch, H.; Evarts, R. P.; Marsden, E.; Thorgeirsson, S. S. Measurement of cell proliferation in microculture using Hoeschst 33342 for the rapid semiautomated microfluorimetric determination of chromatin DNA. Exp. Cell Res. 159:235–246; 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson, D.; Willcox, P. 4-Methylumberlliferyl phosphate as a substrate for lysosomal acid phosphate. Biochim. Biophys. Acta 191:183–186; 1969.

    PubMed  CAS  Google Scholar 

  30. Schlager, S. I.; Adams, A. C. Use of dyes and radioisotopic markers in cytotoxicity tests. In: Hangone, J. J.; Vunakis, H. V., ed. Methods in enzymology. Vol. 93. San Diego: Academic Press; 1983:233–245.

    Google Scholar 

  31. Schulz, J.; Dettlaff, S.; Fritzsche, U.; Harms, T.; Schiebel, H.; Derer, W.; Fusenig, N. E.; Hulsen, A.; Bohm, M. The amido black assay: a simple and quantitative multipurpose test of adhesion, proliferation, and cytotoxicity in microplate culture of keratinocytes (HaCaT) and other cell types growing adherently or in suspension. J. Immunol. Methods 167:1–13; 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Stadler, R.; Detmar, M.; Stephanek, K.; Bangemann, C.; Orfanos, C. E. A rapid fluorometric assay for the determination of keratinocyte proliferation in vitro. J. Invest. Dermatol. 93:532–534; 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Vorborodt, A.; Charpentier, R.; Cristofalo, V. J. Effect of cell density and senescence of WI-38 cells on cytochemically demonstrable phosphatases. Mech. Aging Dev. 11:113–125; 1979.

    Article  Google Scholar 

  34. West, D. C.; Sattar, A.; Kumar, S. A simplified in situ solubilization procedure for determination of DNA and cell number in tissue cultured mammalian cells. Anal. Biochem. 147:289–295; 1986.

    Article  Google Scholar 

  35. Witkowski, A.; Daunert, S.; Kindy, M. S.; Bachas, L. G. Enzyme-linked immunosorbent assay for an octapeptide based on a genetically engineered fusion protein. Anal. Chem. 65:1147–1151; 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Yang, T. T.; Sinai, P.; Kain, S. R. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal. Biochem. 241:103–108; 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Yoshida, A.; Anand-Apte, B.; Zetter, B. R. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Parandoosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parandoosh, Z., Bogowitz, C.A. & Nova, M.P. A fluorometric assay for the measurement of endothelial cell density in vitro . In Vitro Cell.Dev.Biol.-Animal 34, 772–776 (1998). https://doi.org/10.1007/s11626-998-0031-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0031-z

Key words

Navigation