Skip to main content

Advertisement

Log in

Autocrine secretion of TGF-β1 and TGF-β2 by pre-adipocytes and adipocytes: A potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have developed an in vitro system to examine the influence of adipocytes, a major mammary stromal cell type, on the growth of a murine mammary carcinoma, SP1. Previously, we have shown that 3T3-L1 adipocytes release a mitogenic factor, hepatocyte growth factor, which strongly stimulates proliferation of SP1 cells. We now show that 3T3-L1 pre-adipocytes secrete active inhibitory molecules which inhibit DNA synthesis in SP1 cells. In addition, latent inhibitory activity is present in conditioned media (CM) from both pre-adipocytes and adipocytes, and is activated following acid treatment. CM also inhibited DNA synthesis in Mv1Lu wild type epithelial cells, but not DR27 mutant epithelial cells which lack TGF-β type II receptor. Inhibitory activity of CMs was partially abrogated by neutralizing anti-TGF-β1 and anti-TGF-β2 antibodies, and was removed following ultrafiltration through membranes of 10 000 Mr but not 30 000 Mr pore size. These results show that the inhibitory effect on DNA synthesis is mediated by TGF-β1-like and TGF-β2-like molecules. In addition, acid-treated CM as well as purified TGF-β inhibited differentiation of pre-adipocytes. Untreated pre-adipocyte CM, but not mature adipocyte CM, spontaneously inhibited adipocyte differentiation. Together, these findings indicate that pre-adipocytes spontaneously activate their own secreted TGF-β, whereas mature adipocytes do not, and suggest that activation of TGF-β has a potent negative regulatory effect on adipocyte differentiation and tumor growth. Thus, TGF-β may be an important modulator of tumor growth and adipocyte differentiation via both paracrine and autocrine mechanisms. These findings emphasize the importance of adipocyte-tumor interactions in the regulation of tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandrow, M. G.; Moses, H. L. Transforming growth factor-β and cell cycle regulation. Cancer Res. 55:1452–1457; 1995.

    PubMed  CAS  Google Scholar 

  • Arteaga, C. L.; Coffey, R. J. Transforming growth factor-β isoforms in mammary neoplasia: more questions than answers. Hum. Pathol. 23:1–3; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bortell, R.; Owen, A. T.; Ignotz, R., et al. TGF-β1 prevents the down regulation of type I procollagen, fibronectin, and TGF-β1 gene expression associated with 3T3-L1 pre-adipocyte differentiation. J. Cell. Biochem. 54:256–263; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.-L.; Gillett, N.; Figari, I., et al. Increased transforming growth factor-β expression inhibits DNA synthesis in vitro, yet increases tumorigenicity and tumor growth of Meth A Sarcoma cells. Cancer Res. 53:4391–4398; 1993.

    PubMed  CAS  Google Scholar 

  • Cui, W.; Fowlis, D. J.; Bryson, S., et al. TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Cui, W.; Akhurst, R. J. Transforming growth factor β: biochemistry and biology in vitro and in vivo. In: Bondy, C.; LeRoith, D., ed. Growth factors and cytokines in health and disease. Greenwich, Connecticut: JAI Press; 1996:357–394.

    Google Scholar 

  • Danielpour, D.; Dart, L. L.; Flanders, K. C., et al. Immunodetection and quantitation of two forms of transforming growth factor-β (TGF-β1 and TGF-β2) secreted by cells in culture. J. Cell. Physiol. 138:79–86; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Derynck, R.; Goeddel, D. V.; Ullrich, A., et al. Synthesis of messenger RNAs for transformed growth factors α and β and the epidermal growth factor receptor by human tumors. Cancer Res. 47:707–712; 1987.

    PubMed  CAS  Google Scholar 

  • Elliott, B.; Maxwell, L.; Arnold, M., et al. Expression of epithelial-like markers and class I major histocompatibility antigens by a murine carcinoma growing in the mammary gland and in metastasis: orthotopic site-effects. Cancer Res. 48:7237–7245; 1988.

    PubMed  CAS  Google Scholar 

  • Elliott, B.; Tam, S.-O.; Dexter, D., et al. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int. J. Cancer 51:416–424; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Glick, A. D.; Lee, M. M.; Darwiche, N., et al. Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes Develop. 8:2429–2440; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, G. J.; Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hsing, A. Y.; Kadomatsu, K.; Bonham, M. J., et al. Regulation of apoptosis induced by transforming growth factor-β1 in nontumorigenic and tumorigenic rat prostatic epithelial cell lines. Cancer Res. 56:5146–5149; 1996.

    PubMed  CAS  Google Scholar 

  • Ignotz, R. A.; Massague, J. Type β transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 82:8530–8534; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Jhappan, C.; Geiser, A. G.; Kordon, E. C., et al. Targeting expression of a transforming growth factor-β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12:1835–1845; 1993.

    PubMed  CAS  Google Scholar 

  • Kingsley, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8:133–146; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, A. D. Identification and activation of latent transforming growth factor-β. Methods Enzymol. 198:327–336; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, R. M.; Keski-Oja, J.; Moses, H. L. Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium. J. Cell Biol. 106:1659–1665; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Markowitz, S.; Wang, J.; Myeroff, L., et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1276–1277; 1995.

    Article  Google Scholar 

  • Massague, J.; Cheifetz, S.; Endo, T., et al. Transforming growth factor-β is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 83:8206–8210; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K.; Tajima, H.; Okazaki, H., et al. Negative regulation of hepatocyte growth factor gene expression in human lung fibroblasts and leukemic cells by transforming growth factor-β1 and glucocorticoids. J. Biol. Chem. 267:24917–24920; 1992.

    PubMed  CAS  Google Scholar 

  • Moghul, A.; Lin, L.; Beedle, A., et al. Modulation of c-met proto-oncogene (HGF receptor) mRNA abundance by cytokines and hormones: evidence for rapid decay of the 8 kb c-met transcript. Oncogene 9:2045–2052; 1994.

    PubMed  CAS  Google Scholar 

  • Park, K.; Kim, S.-J.; Bang, Y.-J., et al. Genetic changes in the transforming growth factor-β (TGF-β) type II receptor gene in human gastric cancer cells: correlation with sensitivity to inhibition of proliferation by TGF-β. Proc. Natl. Acad. Sci. USA 91:8772–8776; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, D. F.; Johnson, M. D.; Matsui, Y., et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing TGF-β1. Genes Dev. 7:2308–2317; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ponzetto, C.; Giordano, S.; Peverali, F., et al. c-met is amplified but not mutated in a cell line with an activated Met tyrosine kinase. Oncogene 6:553–559; 1991.

    PubMed  CAS  Google Scholar 

  • Polyak, K.; Kato, J.-Y.; Solomon, M. J., et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor β and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rahimi, N.; Saulnier, R.; Nakamura, T., et al. Role of hepatocyte growth factor (HGF) in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 13:1189–1197; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rahimi, N., Etchells, S.; Elliott, B. Hepatocyte growth factor (HGF) is a copper-binding protein: a facile probe for purification of HGF by immobilized C(II)-affinity chromatography. Protein Expr. Purif. 7:329–333; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, R. L.; Campion, D. R.; Hausman, G. J., et al. Transforming growth factor-β and adipogenesis in pigs. J. Anim. Sci. 67:2171–2180; 1989.

    PubMed  CAS  Google Scholar 

  • Rizzino, A.; Ruff, E.; Rizzino, H. Induction and modulation of anchorage-independent growth by platelet-derived growth factor, fibroblast growth factor, and transforming growth factor-β. Cancer Res. 46:2816–2820; 1986.

    PubMed  CAS  Google Scholar 

  • Roberts, A. B.; Sporn, M. B. The transforming growth factor-βs. In: Sporn, M. B.; Roberts, A. B., ed. Peptide growth factors and their receptors. Berlin: Springer-Verlag; 1990:419–472.

    Google Scholar 

  • Saulnier, R.; Bhardwaj, B.; Klassen, J., et al. Fibronectin fibrils and growth factors stimulate anchorage-independent growth of a murine mammary carcinoma. Exp. Cell Res. 222:360–369; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Schultz-Cherry, S.; Chen, H.; Mosher, D. F., et al. Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 270:7304–7310; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sehgal, I.; Baley, P. A.; Thompson, T. C. Transforming growth factor β1 stimulates contrasting responses in metastatic versus primary prostate cancer-derived cell lines in vitro. Cancer Res. 56:3366–3370; 1996.

    Google Scholar 

  • Serrero, G.; Mills, D. Decrease in transforming growth factor β1 binding during differentiation of rat adipocyte precursors in primary culture. Cell Growth Differ. 2:173–178; 1991.

    PubMed  CAS  Google Scholar 

  • Taipole, J.; Keski-Oja, J. Hepatocyte growth factor releases epithelial and endothelial cells from growth arrest induced by transforming growth factor β1. J. Biol. Chem. 271:4342–4348; 1996.

    Article  Google Scholar 

  • Torre-Amione, G.; Beauchamp, R. D.; Koeppen, H., et al. A highly immunogenic tumor transfected with a murine transforming growth factor-β1 cDNA escapes immune surveillance. Proc. Natl. Acad. Sci. USA 87:1486–1490; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wakefield, L. M.; Smith, D. M.; Flanders, K. C., et al. Latent transforming growth factor-β from human platelets: a high molecular weight complex containing precursor sequences. J. Biol. Chem. 263:7646–7654; 1988.

    PubMed  CAS  Google Scholar 

  • Wang, D.; Zhou, G.; Birkenmeier, T. M., et al. Autocrine transforming growth factor β1 modulates the expression of integrin α5β1 in human colon carcinoma FET cells. J. Biol. Chem. 270:14154–14159; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, F. R.; Shah, A.; Smith, P. J., et al. Regulation of collagen gene expression in 3T3-L1 cells. Effects of adipocyte differentiation and tumor necrosis factor-α. Biochemistry 28:4094–4099; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Wrana, J.; Attisano, L.; Carcamo, J., et al. TGF-β signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, N., Tremblay, E., McAdam, L. et al. Autocrine secretion of TGF-β1 and TGF-β2 by pre-adipocytes and adipocytes: A potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells. In Vitro Cell.Dev.Biol.-Animal 34, 412–420 (1998). https://doi.org/10.1007/s11626-998-0023-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0023-z

Key words

Navigation