Skip to main content

Advertisement

Log in

Establishment and characterization of a novel in vitro angiogenesis model using a microvascular endothelial cell line, F-2C, cultured in chemically defined medium

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The behavior of vascular endothelial cells (EC) is an important factor in the processes involved in angiogenesis, but the regulatory mechanisms of angiogenesis, especially underlying the tubulogenesis by EC are not yet clear. Although a number of in vitro experimental models of tubulogenesis have been developed by use of cultured EC, most of those models are too complex to be easily handled and further, the culture media are usually supplemented with serum, creating problems in interpretation of experimental results. To generate a simple in vitro angiogenesis study model under serum-free culture conditions, we adapted a murine microvascular endothelial cell line, F-2, to a chemically defined medium, Cos Medium 001, and successfully established a subline of F-2, designated F-2C, which revealed a unique growth pattern. In Cos Medium 001, F-2C proliferates in a cobblestone pattern at an early growth stage, but, at a late growth stage, spontaneously differentiates to form three-dimensional honeycomblike tubular structures without the supplementation of any specific factors. The cell aggregation activity of F-2C in the presence of Ca2+ was much greater than that of F-2. The amount of subendothelial matrix deposited by F-2C was significantly higher than that by F-2, and increased prominently after the F-2C cells reached the differentiating stage of tubulogenesis. These findings indicate that F-2C is a new EC line in which tubulogenesis is spontaneously induced by the marked deposition of basement membrane analog to the subendothelial matrix and by the enhancement of presumable cadherin activity. We suggest that this cell line, F-2C, represents a simple and useful in vitro angiogenesis model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ades, E. W.; Candal, F. J.; Swerlick, R. A., et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Dermatol. 99:683–690; 1992.

    CAS  Google Scholar 

  2. Auerbach, R.; Kubal, L.; Knighton, D., et al. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41:391–394; 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, D.; Sato, G. Growth of a human mammary tumour cell line in a serum-free medium. Nature 281:388–389; 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Bauer, J.; Margolis, M.; Schreiner, C., et al. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J. Cell. Physiol. 153:437–449; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. De Groot, P. G.; Willems, C.; Gonsalves, M. D., et al. The proliferation of human umbilical vein endothelial cells in serum-free medium. Thromb. Res. 31:623–634; 1983.

    Article  Google Scholar 

  7. Feder, J.; Marasa, J. C.; Olander, J. V. The formation of capillary like tubes by calf endothelial cells grown in vitro. J. Cell. Physiol. 116:1–6; 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman, J. Angiogenesis and its inhibitors. In: DeVita, V. T., Jr.; Hellman, S.; Rosenberg, S., eds. Important advances in oncology. Philadelphia, PA: J. B. Lippincott Co.; 1985;42–62.

    Google Scholar 

  9. Folkman, J. Angiogenesis in cancer, vascular rheumatoid and other diseases. Nature Medicine 1:27–31; 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature (Lond.) 288:551–556; 1980.

    Article  CAS  Google Scholar 

  11. Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 235:442–447; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Folkman, J.; Klagsbrun, M. A family of angiogenic peptides. Science 29:671–672; 1987.

    Google Scholar 

  13. Gamble, J. R.; Matthias, L. J.; Meyer, G., et al. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121:931–943; 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Gimbone, M. A., Jr.; Cotran, R.; Leapman, S., et al. Tumor growth neovascularization: an experimental model using rabbit cornea. J. Natl. Cancer Inst. 52:413–427; 1974.

    Google Scholar 

  15. Gorfien, S.; Spector, A.; DeLuca, D., et al. Growth and physiological functions of vascular endothelial cells in a new-serum free medium (SFM). Exp. Cell Res. 206:291–301; 1993.

    Article  PubMed  CAS  Google Scholar 

  16. Grant, D. S.; Tashiro, K. I.; Segui-Real, B., et al. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Hoshi, H.; McKeehan, W. L. Brain- and liver cell-derived factors are required for growth of human endothelial cells in serum-free culture. Proc. Natl. Acad. Sci. USA 81:6413–6417; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58:803–805; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Ingber, D. E.; Madri, J. A.; Folkman, J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell. Dev. Biol. 23:387–394; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Iruela-Arispe, M. L.; Hasselaar, P.; Sage, H. Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64:174–186; 1991.

    PubMed  CAS  Google Scholar 

  22. Jackson, C. J.; Knop, A.; Giles, I., et al. VLA-2 mediates the interaction of collagen with endothelium during in vitro vascular tube formation. Cell Biol. Int. 18:859–867; 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Kan, M.; Kato, M.; Yamane, I. Long-term serial cultivation and growth requirements for human umbilical endothelial cells. In Vitro Cell. Dev. Biol. 21:181–188; 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Klagsbrun, M. Regulators of angiogenesis: stimulators, inhibitors and extracellular matrix. J. Cell. Biochem. 47:199–200; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Kubota, Y.; Kleinman, H. K.; Martin, G. R., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1597; 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Lawley, T. J.; Kubota, Y. Induction of morphological differentiation of endothelial cells in culture. J. Invest. Dermatol. 93 (2 suppl): 59S-61S; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Maciag, T.; Kadish, L.; Wilkins, M., et al. Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol. 94:511–520; 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Madri, J. A.; Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Maruyama, H.; Toda, K.-I.; Uno, K., et al. Murine endothelial cell line cells, F-2: interaction with leukocytes and cytokines production. Microbiol. Immunol. 37:895–901; 1993.

    PubMed  CAS  Google Scholar 

  30. Matsuyoshi, N.; Hamaguchi, M.; Taniguchi, S., et al. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J. Cell Biol. 118:703–714; 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuyoshi, N.; Toda K-I.; Horiguchi Y., et al. In vivo evidence for the critical role of cadherin-5 in murine vascular integrity. Proc. of the Association of American Physicians, in press.

  32. Montesano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Moshage, H.; Casini, A.; Lieber, C. S. Acetaldehyde selectively stimulates collagen production in cultured rat-storing cells but not in hepatocytes. Hepatology 12:511–518; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Nguen, M.; Strubel, N. A.; Bischoff, J. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365:267–269; 1993.

    Article  Google Scholar 

  35. Nicosia, R. F.; Tchao, R.; Leighton, J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18:538–549; 1982.

    PubMed  CAS  Google Scholar 

  36. Nishioka, K.; Ryan, T. J. The influence of the epidermis and other tissues on blood vessel growth in the hamster cheek pouch. J. Invest. Dermatol. 58:33–45; 1972.

    Article  PubMed  CAS  Google Scholar 

  37. Schor, A. M.; Schor, S. L.; Allen, T. D. Effects of culture conditions on the proliferation, morphology and migration of bovine aortic endothelial cells. J. Cell Sci. 62:267–285; 1983.

    PubMed  CAS  Google Scholar 

  38. Takashima, A.; Billingham, D. Sc.; Grinnell, F. Activation of rabbit keratinocyte fibronectin receptor function in vivo during wound healing. J. Invest. Dermatol. 86:585–590; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 75:464–474; 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Toda, K.-I.; Tsujioka, K.; Maruguchi, Y., et al. Establishment and characterization of a tumorigenic murine vascular endothelial cell line (F-2). Cancer Res. 50:5526–5530; 1990.

    PubMed  CAS  Google Scholar 

  41. Toda, K.-I.; Tuan, T. L.; Brown, P. J., et al. Fibronectin receptors of human keratinocytes and their expression during cell culture. J. Cell Biol. 105:3097–3104; 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Tsujioka, K.; Toda, K.-I.; Maruguchi, Y., et al. Morphological characterization of hemangiomatous tumors derived from a novel murine vascular endothelial cell line (F-2). J. Dermatol. 18:506–516; 1991.

    PubMed  CAS  Google Scholar 

  43. Vlodavsky, I.; Folkman, J.; Sullivan, R., et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84:2292–2296; 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Zetter, B. Angiogenesis state of the art. Chest 93:159S-166S; 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CS., Toda, KI., Maruguchi, Y. et al. Establishment and characterization of a novel in vitro angiogenesis model using a microvascular endothelial cell line, F-2C, cultured in chemically defined medium. In Vitro Cell.Dev.Biol.-Animal 33, 796–802 (1997). https://doi.org/10.1007/s11626-997-0159-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0159-2

Key words

Navigation