Skip to main content
Log in

In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to αvβ3 integrin localization

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This study deals with the role of the mechanical properties of matrices in in vitro angiogenesis. The ability of rigid fibrinogen matrices with fibrin gels to promote capillarylike structures was compared. The role of the mechanical properties of the fibrin gels was assessed by varying concentration of the fibrin gels. When the concentration of fibrin gels was decreased from 2 mg/ml to 0.5 mg/ml, the capillarylike network increased. On rigid fibrinogen matrices, capillarylike structures were not formed. The extent of the capillarylike network formed on fibrin gels having the lowest concentration depended on the number of cells seeded. The dynamic analysis of capillarylike network formation permitted a direct visualization of a progressive stretching of the 0.5 mg/ml fibrin gels. This stretching was not observed when fibrin concentration increases. This analysis shows that 10 h after seeding, a prearrangement of cells into ringlike structures was observed. These ringlike structures grew in size. Between 16 and 24 h after seeding, the capillarylike structures were formed at the junction of two ringlike structures. Analysis of the αvβ3 integrin localization demonstrates that cell adhesion to fibrinogen is mediated through the αvβ3 integrin localized into adhesion plaques. Conversely, cell adhesion to fibrin shows a diffuse and dot-contact distribution. We suggest that the balance of the stresses between the tractions exerted by the cells and the resistance of the fibrin gels triggers an angiogenic signal into the intracellular compartment. This signal could be associated with modification in the αvβ3 integrin distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, R. D.; Allen, N. S.; Travis, J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analysing microtubule-related motility in the reticulopodial network of Allogromia paticollaris. Cell Motil. 1:291–302; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Barocas, V. H.; Moon, A. G.; Tranquillo, R. T. The fibroblast-populated collagen microsphere assay of cell traction force-part 2: measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170; 1995.

    PubMed  CAS  Google Scholar 

  3. Basson, C. T.; Knowles, W. J.; Bell, L., et al. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events. J. Cell Biol. 110:789–801; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Bauer, J.; Margolis, M.; Schreiner, C., et al. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J. Cell. Physiol. 153:437–449; 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Bretscher, M. S. Cells use their transferrin receptors for locomotion. Eur. Mol. Biol. Organ. J. 11:393–389; 1992.

    Google Scholar 

  6. Brooks, P. C.; Clark, R. A. F.; Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571; 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Burridge, K.; Fath, K.; Kelly, T., et al. Focal adhesion: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Cheresh, D. Human endothelial cells synthesize and express an Arg-Gly-Asp directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84:6471–6475; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Cotran, R. S.; Kumar, V.; Robbins, S. L. Inflammation and repair. In: Pathologic basis of disease, 4th ed. London: W. B. Saunders. 1990: 39–86.

    Google Scholar 

  10. Dejana, E.; Lampugnani, M. G.; Giorgi, M., et al. Fibrinogen induces endothelial cell adhesion and spreading via release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood 75:1509–1517; 1990.

    PubMed  CAS  Google Scholar 

  11. Drake, C. J.; Cheresh, D. A.; Little, C. D. An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci. 108:2655–2661; 1995.

    PubMed  CAS  Google Scholar 

  12. Duband, J. L.; Nuckolls, G. H.; Ishiara, A., et al. Fibronectin receptor exhibits lateral motility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107:1385–1396; 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Dubois-Stringfellow, N.; Jonczyck, A.; Bautch, V. L. Perturbations in the fibrinolytic pathway abolish cyst formation but not capillary-like organization of cultured murine endothelial cells. Blood 83(11):3206–3217; 1994.

    PubMed  CAS  Google Scholar 

  14. Engvall, E.; Ruoslahti, E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20:1–5; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Folkman, J. Diagnostic and therapeutic application of angiogenesis research. C.R. Acad. Sci. III 16:914–918; 1993.

    Google Scholar 

  16. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1 (1):27–31; 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Folkman, J.; Klagsbrun, M. Angiogenic factors. Science (Wash., DC). 235:442–447; 1987.

    Article  CAS  Google Scholar 

  18. Fournier, N.; Doillon, C. J. In vitro angiogenesis in fibrin matrices containing fibronectin or hyaluronic acid. Cell Biol. Int. Rep. 16(12):1251–1263; 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Gamble, J. R.; Matthias, L. J.; Meyer, G., et al. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121(4):931–943; 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Granger, B. L.; Lazarides, E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18:1053–1063; 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Grant, D. S.; Kinsella, J. L.; Fridman, R., et al. Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J. Cell. Physiol. 153:614–625; 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Guenet, J. M. Thermoreversible gelation of polymers and biopolymers. London: Academic Press; 1992.

    Google Scholar 

  23. Guidry, C.; Grinnell, G. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Collagen Relat. Res. 6:515–529; 1986.

    Google Scholar 

  24. Hynes, R. O. Wound healing, inflammation, and fibrosis. In: Fibronectins. New York: Springer-Verlag; 1990:349–364.

    Google Scholar 

  25. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. 87:3579–3583; 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Ingber, D. E. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848; 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Ingber, D. E. Cellular tensegrity: new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627; 1993.

    PubMed  Google Scholar 

  29. Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58:803–805; 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Ingber, D. E.; Kike, L.; Hansen, L., et al. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 150:173–224; 1994.

    PubMed  CAS  Google Scholar 

  31. Jaffé, E. A.; Nachman, A. R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    PubMed  Google Scholar 

  32. Juliano, R. L.; Haskill, S. Signal transduction from the extracellular matrix. J. Cell Biol. 120(3):577–585; 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Keckwick, R. A.; McKay, M. E.; Nance, M. H., et al. The purification of human fibrinogen. Biochem. J. 60:671–683; 1955.

    Google Scholar 

  34. Klagsbrun, M.; D’Amore, P. A. Regulators of angiogenesis. Annu. Rev. Physiol. 53:217–239; 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Kubota, Y.; Kleinman, H. K.; Martin, G. R., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598; 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Montesano, R.; Pepper, M. S.; Vassali, J.-D., et al. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132:460–466; 1987.

    Article  Google Scholar 

  37. Nermut, M. V.; Eason, E.; Hirst, E. M., et al. Cell/substrate adhesion in RSV-transformed rat fibroblasts. Exp. Cell Res. 193:382–391; 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Nicosia, R. F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. Lab. Invest. 63(1):115–122; 1990.

    PubMed  CAS  Google Scholar 

  39. Opas, M. Substratum mechanics and cell differentiation. Int. Rev. Cytol. 150:119–137; 1994.

    Article  PubMed  CAS  Google Scholar 

  40. Pepper, M. S.; Vassalli, J. D.; Orci, L., et al. Angiogenesis in vitro: cytokines interactions and balanced extracellular proteolysis. In: Maragoudakis, M. E., et al., eds. Angiogenesis: molecular biology, clinical aspects. New York: Plenum Press; 1994.

    Google Scholar 

  41. Schwartz, M. A.; Ingber, D. E. Integrating with integrins. Mol. Biol. Cell 5:389–393; 1994.

    PubMed  CAS  Google Scholar 

  42. Streeter, I. B.; Rees, D. A. Fibroblast adhesion to RGDs shows novel features compared with fibronectin. J. Cell Biol. 105:507–515; 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Streuli, C. H.; Bissel, M. J. Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110:1405–1415; 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Tawil, N.; Wilson, P.; Carbonetto, S. Integrins in point contacts mediate cell spreading: factors that regulate integrin accumulation in point contacts vs. focal contacts. J. Cell Biol. 120(1):261–271; 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Tranqui, L.; Andrieux, A.; Hudry-Clergeon, G., et al. Differential structural requirements for fibrinogen binding to platelets and to endothelial cells. J. Cell Biol. 108:2519–2527; 1989.

    Article  PubMed  CAS  Google Scholar 

  46. Tranqui, L.; Usson, Y.; Marie, C., et al. Adhesion of CHO cells to fibronectin is mediated by functionally and structurally distinct adhesion plaques. J. Cell Sci. 106:377–387; 1993.

    PubMed  CAS  Google Scholar 

  47. Vernon, R. B.; Lara, S. L.; Drake, C. J., et al. Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell. Dev. Biol. 31:120–131; 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vailhé, B., Ronot, X., Tracqui, P. et al. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to αvβ3 integrin localization. In Vitro Cell.Dev.Biol.-Animal 33, 763–773 (1997). https://doi.org/10.1007/s11626-997-0155-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0155-6

Key words

Navigation