Skip to main content
Log in

The cytotoxic interaction of inorganic trace elements with EDTA and cisplatin in sensitive and resistant human ovarian cancer cells

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cisplatin (CDDP)-sensitive and -resistant human ovarian cells were studied in vitro with the objective of enhancing CDDP cytotoxicity by the addition of a metal and the chelate ethylenediaminetetraacetic acid (EDTA), to the CDDP. Chelateable elements, such as bismuth, calcium, cadmium, copper, iron, magnesium, selenium, vanadium, and zinc, when added to CDDP and in the presence of EDTA increased the cytotoxicity of the CDDP as compared to CDDP treatment alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, P. A.; Howell, S. B. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 2:35–43; 1990.

    PubMed  CAS  Google Scholar 

  2. Borenfreund, E.; Puerner, J. A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Tox. Let. 24:(2–3):119–24; 1985.

    Article  CAS  Google Scholar 

  3. Borenfreund, E.; Puerner, J. A. Cytotoxicity of metals, metal-metal and metal-chelator combinations assayed in vitro. Toxicology 39:121–134; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Cannistra, S. A. Cancer of the ovary. N. Engl. J. Med. 329:1550–1559; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Cherian, M. G.; Howell, S. B.; Inura, N., et al. Role of metallothionein in carcinogenesis. Toxicol. Appl. Pharmacol. 126:1–5; 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Dwyer, F. P.; Mellor, D. P. Chelating agents and metal chelates. New York: Academic Press; 1964:17–27.

    Google Scholar 

  7. Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. & Ther. 34:155–166; 1987.

    Article  CAS  Google Scholar 

  8. Farrell, N. Structurally novel platinum antitumor compounds. In: Howell, S. B., ed. Platinum and other metal coordination compounds in cancer chemotherapy. New York: Plenum Press; 1991:81–92.

    Google Scholar 

  9. Kondo, Y.; Satoh, M.; Imura, N., et al. Tissue-specific induction of metallothionein by bismuth as a promising protocol for chemotherapy with repeated administration of cis-diamminedichloroplatinum (II) against bladder tumor. Anticancer Res. 12:2303–2308; 1992.

    PubMed  CAS  Google Scholar 

  10. Lemaire, M. A.; Schwartz, A.; Rahmouni, A. R., et al. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc. Natl. Acad. Sci. 88:1982–1985; 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Loehrer, P. J.; Einhorn, L. H. Cisplatin. Ann. Intern. Med. 100(5):704–713; 1984.

    PubMed  CAS  Google Scholar 

  12. Murthy, M. S.; Rao, L. N.; Khandekar, J. D., et al. Enhanced therapeutic efficacy of cisplatin by combination with diethyldithiocarbamate and hyperthermia in a mouse model. Cancer Res. 47:774–779; 1987.

    PubMed  CAS  Google Scholar 

  13. Naganuma, A.; Satoh, M.; Imura, N. Prevention of lethal and renal toxicity of cis-diamminedichloroplatinum (II) by induction of metallothionein synthesis without compromising its antitumor activity in mice. Cancer Res. 47:983–987; 1987.

    PubMed  CAS  Google Scholar 

  14. Nicholson, D. L.; Maier, R. H.; Pories, W. J. Zinc-enhanced cytotoxicity in cisplatin sensitive and resistant human ovarian cancer cells. In Vitro Cell. Dev. Biol. 29A:625–626; 1993.

    CAS  Google Scholar 

  15. Nicholson, D. L.; Maier, R. H.; Pories, W. J. Differential cytotoxicity of metal chelating agents in cisplatin sensitive and resistant human ovarian cancer cells. Trace Elem. Med. 10:188–191; 1993.

    CAS  Google Scholar 

  16. Parker, R. J.; Eastman, A.; Bostick-Bruton, F., et al. Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J. Clin. Invest. 87(3):722–727; 1991.

    Article  Google Scholar 

  17. Satoh, M.; Kloth, D.; Kadhim, S., et al. Modulation of both cisplatin nephrotoxicity and drug resistance in murine bladder tumor by controlling metallothionein synthesis. Cancer Res. 53:1829–1832; 1993.

    PubMed  CAS  Google Scholar 

  18. Timmer-Bosscha, H.; Mulder, N. H.; deVries, E. G. E. Modulation of cisdiamminedichloroplatinum (II) resistance: a review. Br. J. Cancer 66(2):227–238; 1992.

    PubMed  CAS  Google Scholar 

  19. Trissel, L. Handbook on injectable drugs. Am. Soc. of Hosp. Pharm. Bethesda, MD: 161–163; 1986.

    Google Scholar 

  20. Weiss, R. B.; Christian, M. C. New cisplatin analogues in development—a review. Drugs 46(3):360–377; 1993.

    PubMed  CAS  Google Scholar 

  21. Withrow, S. J.; Powers, B. E.; Straw, R. C., et al. Comparative aspects of osteosarcoma: dog versus man. Clinical Orthopaedics and Related Research 270:159–168; 1991.

    PubMed  Google Scholar 

  22. Young, R. Mechanisms to improve chemotherapy effectiveness. Cancer 65(1):815–822; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, R.H., Purser, S.M., Nicholson, D.L. et al. The cytotoxic interaction of inorganic trace elements with EDTA and cisplatin in sensitive and resistant human ovarian cancer cells. In Vitro Cell.Dev.Biol.-Animal 33, 218–221 (1997). https://doi.org/10.1007/s11626-997-0145-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0145-8

Key words

Navigation