Skip to main content
Log in

Establishment and immunocharacterization of an immortalized pancreatic cell line derived from the H-2Kb-tsA58 transgenic mouse

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This study describes the establishment and characterization of an immortalized cell line derived from the pancreas of an adult H-2Kb-tsA58 transgenic mouse. These cells, designated IMPAN for IMmortalized PANcreatic cells, displayed a cobblestone appearance typical of confluent epithelial cells and a distinct polarity in the organization of their cytoplasmic organelles. Immunocytochemical studies revealed that all IMPAN cells stained positively for a wide range of markers characteristic of pancreatic acinar cells, namely the secretory products α-amylase, chymotrypsinogen, DNAse, the lectinlike secretory protein PAP (pancreatitis associated protein), and the zymogen granule membrane proteins GP-2 and gp300. They also stained positively for carbonic anhydrase II and cytokeratin 19, two proteins characteristic of pancreatic duct cells, as well as for rab3A, a small GTP-binding protein specifically localized in pancreatic islet cells. No reactivity was ever obtained with insulin antibodies. Taken together, these results show that the IMPAN cells exhibit a phenotype comparable to exocrine pancreatic acinar cells. However the expression of some proteins more specific to duct and islet cells make them similar to in vivo or in vitro growing acinar cells. The cell line should be a valuable model to study the mechanisms of growth, differentiation, and transformation of the exocrine pancreatic acinar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnert-Hilger, G.; Wiedenmann, B. The amphicrine pancreatic cell line, AR42J, secretes GABA and amylase by separate regulated pathways. FEBS Lett. 314:41–44; 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Arias, A. E.; Bendayan, M. Differentiation of pancreatic acinar cells into duct-like cells in vitro. Lab. Invest. 69:518–530; 1993.

    PubMed  CAS  Google Scholar 

  3. Arita, Y.; Douziech, N.; Hou, W., et al. Effect of caerulein and basic FGF on growth of a novel pancreatic acinar cell line. Pancreas 11:419; 1995 (abstract).

    Google Scholar 

  4. Bonner-Weir, S.; Baxter, L. A.; Schuppin, G. T., et al. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42:1715–1720; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Bouwens, L.; Braet, F.; Heimberg, H. Identification of rat pancreatic duct cells by their expression of cytokeratins 7, 19, and 20 in vivo and after isolation and culture. J. Histochem. Cytochem. 43:245–253; 1995.

    PubMed  CAS  Google Scholar 

  6. Christophe, J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am. J. Physiol. 266 (Gastrointest. Liver Physiol. 29):G963-G971; 1994.

    PubMed  CAS  Google Scholar 

  7. De Lisle, R. C. Characterization of the major sulfated protein of mouse pancreatic acinar cells: a high molecular weight peripheral membrane glycoprotein of zymogen granules. J. Cell. Biochem. 56:385–396; 1994.

    Article  PubMed  Google Scholar 

  8. De Lisle, R. C.; Grendell, J. H.; Williams, J. A. Growing pancreatic acinar cells (postpancreatitis and fetal) express a ductal antigen. Pancreas 5:381–388; 1990.

    Article  PubMed  Google Scholar 

  9. De Lisle, R. C.; Isom, K. S. Expression of sulfated gp300 and changes in glycosylation during pancreatic development. J. Histochem. Cytochem. 44:57–66; 1996.

    PubMed  Google Scholar 

  10. De Lisle, R. C.; Logsdon, D. C. Pancreatic acinar cells in culture: expression of acinar and ductal antigens in growth- related manner Eur J. Cell Biol. 51:64–75; 1990.

    PubMed  Google Scholar 

  11. Ebert, M.; Yokoyama, M.; Friess, H., et al. Coexpression of the c-met proto-oncogene and hepatocyte growth factor in human pancreatic cancer Cancer Res. 54:5775–5778; 1994.

    PubMed  CAS  Google Scholar 

  12. Ehler, E.; Jat, P. S.; Noble, M. D., et al. Vascular smooth muscle cells of H-2Kb-tsA58 transgenic mice. Characterization of cell lines with distinct properties. Circulation 92:3289–3296; 1995.

    PubMed  CAS  Google Scholar 

  13. Geuze, H. J.; Slot, J. W.; van der Ley, P. A., et al. Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J. Cell Biol. 89:653–665; 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Grondin, G.; St-Jean, P.; Beaudoin, A. R. Cytochemical and immunocytochemical characterization of a fibrillar network (GP2) in pancreatic juice: possible role as a sieve in the pancreatic ductal system. Eur J. Cell Biol. 57:155–164; 1992.

    PubMed  CAS  Google Scholar 

  15. Guz, Y.; Montminy, M. R.; Stein, R., et al. Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121:11–18; 1995.

    PubMed  CAS  Google Scholar 

  16. Jat, P. S.; Noble, M. D.; Ataliotis, P., et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 88:5096–5100; 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Jena, B. P.; Gumkowski, F. D.; Konieczko, E. M., et al. Redistribution of a Rab3-like GTP-binding protein from secretory granules to the Golgi complex in pancreatic acinar cells during regulated exocytosis. J. Cell Biol. 124:43–53; 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Keim, V.; Iovanna, J. L.; Usadel, K. H., et al. Characterization of a rat pancreatic secretory protein associated with pancreatitis. Gastroenterology 100:775–782; 1991.

    PubMed  CAS  Google Scholar 

  19. Kershaw, T. R.; Rashid-Doubell, F.; Sinden, J. D. Immunocharacterization of H-2Kb-tsA58 transgenic mouse hippocampal neuroepithelial cells. NeuroReport 5:2197–2200; 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Leblond, F. A.; Talbot, B. G.; Lauzon, I., et al. A competition enzyme linked immunosorbent assay (ELISA) for the measurement of pancreatic GP-2 glycoprotein. J. Immunol. Methods 124:71–75; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Le Douarin, N. M. On the origin of pancreatic endocrine cells. Cell 53:169–171; 1988.

    Article  PubMed  Google Scholar 

  22. Logsdon, C. D. Glucocorticoids increase cholecystokinin receptors and amylase secretion in pancreatic acinar AR42J cells. J. Biol. Chem. 261:2096–2101; 1986.

    PubMed  CAS  Google Scholar 

  23. Matteoli, M.; Takei, K.; Cameron, R., et al. Association of Rab3A with synaptic vesicles at late stages of the secretory pathway. J. Cell Biol. 115:625–633; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Mbikay, M.; Grondin, G.; Rondeau, G., et al. A chimeric proinsulin-CD5 protein expressed in AtT-20 cells is directed to the cell surface via the constitutive pathway. Exp. Cell Res. 220:79–91; 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Paradis, K.; Le, O. N. L.; Russo, P., et al. Characterization and response to interleukin 1 and tumor necrosis factor of immortalized murine biliary epithelial cells. Gastroenterology 109:1308–1315; 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Pearse, A. E. G. The APUD concept and its implications: related endocrine peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med. Biol. 55:115–125; 1977.

    PubMed  CAS  Google Scholar 

  27. Pictet, R. L.; Rutter, W. J. Development of the embryonic pancreas. In: Steiner, D. F.; Freinkel, N., ed. Handbook of physiology, Section 7: endocrinology. Washington, DC: American Physiological Society; 1972:25–66.

    Google Scholar 

  28. Rosewicz, S.; Vogt, D.; Harth, N., et al. An amphicrine pancreatic cell line: AR42J cells combine exocrine and neuroendocrine properties. Eur J. Cell Biol. 59:80–91; 1992.

    PubMed  CAS  Google Scholar 

  29. Sandgren, E. P.; Luetteke, N. C.; Palmiter, R. D., et al. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia and carcinoma of the breast. Cell 61:1121–1135; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Sandgren, E. P.; Quaife, C. J.; Paulovich, A. G., et al. Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc. Natl. Acad. Sci. USA 88:93–97; 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Sperti, C.; Militello, C.; Rovati, L., et al. Effect of cholecystokinin analogue caerulein and cholecystokinin antagonist lorglumide on pancreatic carcinogenesis in the rat. J. Surg. Oncol. 57:11–16; 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Whitehead, R. H.; VanEeden, P. E.; Noble, M. D., et al. Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 90:587–591; 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Yamanaka, Y.; Friess, H.; Buchler, M., et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res. 53:5289–5296; 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blouin, R., Grondin, G., Beaudoin, J. et al. Establishment and immunocharacterization of an immortalized pancreatic cell line derived from the H-2Kb-tsA58 transgenic mouse. In Vitro Cell.Dev.Biol.-Animal 33, 717–726 (1997). https://doi.org/10.1007/s11626-997-0130-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0130-2

Key words

Navigation