Skip to main content
Log in

Effects of antisense hsp27 gene expression in osteosarcoma cells

  • Letter To The Editor
  • Scientific Reports
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Benndorf, K.; Hayed, K.; Ryazantsev, S., et al. Phosphorylation and supramolecular organization of murine small heat shock protein hsp25 abolish its actin polymerization-inhibiting activity. J. Biol. Chem. 269:20780–20784; 1994.

    PubMed  CAS  Google Scholar 

  2. Ben Ze’ev, A. The cytoskeleton in cancer cells. Biochim. Biophys. Acta 80:197–212; 1994.

    Google Scholar 

  3. Bird, T. A.; Kyriakis, J. M.; Tysher, L., et al. Interleukin-1 activates p54 mitogen-activated protein (MAP) kinase/stress-activated protein kinase by a pathway independent of p21ras, Raf-1 an MAP kinase kinase. J. Biol. Chem. 269:31836–31844; 1994.

    PubMed  CAS  Google Scholar 

  4. Cairns, J.; Qin, S.; Phip, R., et al. Dephosphorylation of the small heat shock protein hsp27 in vivo by protein phosphatase 2A. J. Biol. Chem. 269:9176–9183; 1994.

    PubMed  CAS  Google Scholar 

  5. Chen, J.; Martin, B. L.; Brautigan, D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Ciocca, D. R.; Oesterreich, S.; Chamness, G. C., et al. Biological and clinical implications of heat shock protein 27000 (hsp27). J. Natl. Cancer Inst. 85:1558–1570; 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Engel, K.; Ahlers, A.; Brach, M., et al. MAPKAP kinase 2 is activated by heat shock and TNF-α: in vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. J. Cell. Biochem. 57:321–330; 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  9. Freshney, N. W.; Rawlinson, L.; Guesdon, F., et al. Interleukin-1 activates a novel protein cascade that results in the phosphorylation of hsp27. Cell 78:1039–1049; 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Guy, G. R.; Philip, R.; Tan, Y. H. Activation of protein kinases and the inactivation of protein phosphatase 2A in tumour necrosis factor and interleukin-1 signal-transduction pathways. Eur. J. Biochem. 229:503–511; 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Hepburn, A.; De Molle, D.; Boeynaems, J. M., et al. Rapid phosphorylation of 26 kD protein induced by tumor necrosis factor. FEBS Lett. 227:175–178; 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Kinelas-Mugge, I.; Trautinger, F. Increased expression of the Mr 27000 heat shock protein (hsp27) in in vitro differentiated human keratinocytes. Cell Growth Diff. 5:777–781; 1994.

    Google Scholar 

  13. Lavoie, J. N.; Hickey, E.; Weber, L. A., et al. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268:24210–24214; 1993.

    PubMed  CAS  Google Scholar 

  14. Mairesse, N.; Horman, S.; Mosselmans, R., et al. Antisense inhibition of hsp27 production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell. Biol. Int. 20:205–212; 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Miron, T.; Vancompernolle, K.; Vanderkerckhove, J., et al. A 25 kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell. Biol. 114:255–261; 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Miyamoto, S.; Teramoto, H.; Coso, O. A., et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell. Biol. 131:791–805; 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Morino, N.; Mimura, T.; Hamasaki, K., et al. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J. Biol. Chem. 270:269–273; 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Nobes, C. D.; Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stressfibers, lamellipodia, and filopodia. Cell 81:53–62; 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Parsons, S. J. T.; Schaller, M. P.; Hildebrand, J., et al. Focal adhesion kinase: structure and signaling. J. Cell. Sci. Suppl. 18:109–113; 1994.

    PubMed  CAS  Google Scholar 

  20. Pienta, K. J.; Hoover, C. N. Coupling of cell structure to cell metabolism. J. Cell. Biochem. 55:16–21; 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Pienta, K. J.; Partin, A. W.; Coffey, D. S. Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res. 49:2525–2532; 1989.

    PubMed  CAS  Google Scholar 

  22. Rana, O.; Mischoulon, D.; Xie, Y., et al. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of CIEBPα and immediate-early growth response transcription factors. Mol. Cell. Biol. 14:5858–5869; 1994.

    PubMed  CAS  Google Scholar 

  23. Roger, P. P.; Rickaert, F.; Lamy, F., et al. Actin stress fibers disruption and tropomyosin isoform switching in normal thyroid cells stimulated by thyrotropin and phorbol esters. Exp. Cell Res. 182:1–13; 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Rouse, J.; Cohen, P.; Trignon, S., et al. A novel kinase triggered by stress and heat shock that stimulates MAPKAP kinase 2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037; 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Ryan, M. P.; Higgins, P. J. Control of p52 (PAI-1) gene expression in normal and transformed rat kidney cells: relationship between p52 (PA-I) induction and ctin cytoarchitecture. In: Estes, J. E. and Higgins, P. J. ed. Actin: Biophysics, Biochemistry, and Cell Biology. New York: Plenum Press; 215–230; 1994.

    Google Scholar 

  26. Shakoori, A. R.; Oberdorf, A. M.; Owen, T. A., et al. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J. Cell. Biochem. 48:277–287; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Shibanuma, M.; Kuroki, T.; Nose, K. Cell cycle dependent phosphorylation of hsp28 by TGFB1 and H2O2 in normal mouse osteoblastic cells (MC3T3-E1), but not in their RAS transformants. Biochem. Biophys. Res. Comm. 187:1418–1425; 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Spector, N. L.; Ryan, C.; Samson, W., et al. Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J. Cell. Physiol. 156:619–625; 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Stokoe, D.; Engel, K.; Campbell, D. G., et al. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. Fed. Eur. Biochem. Soc. 312:307–313; 1992.

    Google Scholar 

  30. Welch, W. J. Phorbol ester, calcium ionophore and serum added to quiescent rat embryo-fibroblast cells, all result in the elevated phosphorylation of two 28,000 dalton mammalian stress proteins. J. Biol. Chem. 260:3058–3062; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondeaux, P., Galand, P., Horman, S. et al. Effects of antisense hsp27 gene expression in osteosarcoma cells. In Vitro Cell.Dev.Biol.-Animal 33, 655–658 (1997). https://doi.org/10.1007/s11626-997-0117-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0117-z

Keywords

Navigation