Skip to main content
Log in

The inability of cells to grow in low iron correlates with increasing activity of their iron regulatory protein (IRP)

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We studied the factors that determine the differing growth requirements of low-iron-tolerant (LIT) versus high-iron-dependent (HID) cells for extracellular nontransferrin iron. The growth of LIT cells HeLa and THP-1, when transferred from transferrin (5 µg/ml) medium into low-iron (5 µM ferric citrate) medium, was not significantly affected while HID cells Jiyoye and K562 showed nearly no growth. HeLa and THP-1 cells, as well as Jiyoye and K562 cells, do not produce transferrin in sufficient amounts to support their growth in low-iron medium. Surprisingly, similar rates of iron uptake in low-iron medium (0.033 and 0.032 nmol Fe/min and 106 cells) were found for LIT cells HeLa and HID cells K562. Furthermore, the intracellular iron level (4.64 nmol/106 cells) of HeLa cells grown in low-iron medium was much higher than iron levels (0.15 or 0.20 nmol/106 cells) of HeLa or K562 cells grown in transferrin medium. We demonstrated that the activity (ratio activated/total) of the iron regulatory protein (IRP) in HID cells Jiyoye and K562 increased more than twofold (from 0.32 to 0.79 and from 0.47 to 1.12, respectively) within 48 h after their transfer into low-iron medium. In the case of LIT cells HeLa and THP-1, IRP activity stayed at similar or slightly decreased levels (0.86–0.73 and 0.58–0.55, respectively). Addition of iron chelator deferoxamine (50 µM, i.e., about half-maximal growth-inhibitory dose) resulted in significantly increased activity of IRP also in HeLa and THP-1 cells. We hypothesize that the relatively higher bioavailability of nontransferrin iron in LIT cells, over that in HID cells, determines the differing responses observed under low-iron conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aisen, P.; Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 49:357–393; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Basset, P.; Quesneau, Y.; Zwiller, J. Iron-induced L1210 cell growth: evidence of a transferrin-independent iron transport. Cancer Res. 46:1644–1647; 1986.

    PubMed  CAS  Google Scholar 

  3. Brissot, P.; Wright, T. L.; Ma, W. L., et al. Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J. Clin. Invest. 76:1463–1470; 1985.

    PubMed  CAS  Google Scholar 

  4. Brock, J. H.; Stevenson, J. Replacement of transferrin in serum-free cultures of mitogen-stimulated mouse lymphocytes by a lipophilic iron chelator. Immunol. Lett. 15:23–25; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Carmichael, J.; DeGraff, W. G.; Gazdar, A. F., et al. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47:936–942; 1987.

    PubMed  CAS  Google Scholar 

  6. Casey, J. L.; Hentze, M. W.; Koeller, D. M., et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240:924–928; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Chitambar, C. E.; Matthaeus, W. G.; Antholine, W. E., et al. Inhibition of leukemic HL-60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood 72:1930–1936; 1988.

    PubMed  CAS  Google Scholar 

  9. Dezza, L.; Cazzola, M.; Danova, M., et al. Effects of desferrioxamine on normal and leukemic human hematopoietic cell growth: in vitro and in vivo studies. Leukemia 3:104–107; 1989.

    PubMed  CAS  Google Scholar 

  10. Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203–210; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Hedley, D. W.; Tripp, E. H.; Slowiaczek, P., et al. Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Cancer Res. 48:3014–3018; 1988.

    PubMed  CAS  Google Scholar 

  12. Hoffbrand, A. V.; Ganeshaguru, K.; Hooton, J. W. L., et al. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br. J. Haematol. 33:517–526; 1976.

    PubMed  CAS  Google Scholar 

  13. Inman, R. S.; Wessling-Resnick, M. Characterization of transferrin-independent iron transport in K562. J. Biol. Chem. 268:8521–8528; 1993.

    PubMed  CAS  Google Scholar 

  14. Kaplan, J.; Jordan, I.; Sturrock, A. Regulation of the transferrin-independent iron transport system in cultured cells. J. Biol. Chem. 266:2997–3004; 1991.

    PubMed  CAS  Google Scholar 

  15. Kaplinsky, C.; Estrov, Z.; Freedman, M. H., et al. Effect of deferoxamine on DNA synthesis, DNA repair, cell proliferation, and differentiation of HL-60 cells. Leukemia 1:437–441; 1987.

    PubMed  CAS  Google Scholar 

  16. Klausner, R. D.; Rouault, T. A.; Harford, J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28; 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Koeller, D. M.; Casey, J. L.; Hentze, M. W., et al. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc. Natl. Acad. Sci. USA 86:3574–3578; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Kovar, J. Growth-stimulating effect of ferric citrate on hybridoma cells: characterization and relation to transferrin function. Hybridoma 7:255–263; 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Kovar, J.; Franek, F. Iron compounds at high concentrations enable hybridoma growth in a protein-free medium. Biotechnol. Lett. 9:259–264; 1987.

    Article  CAS  Google Scholar 

  20. Kovar, J.; Franek, F. Growth-stimulating effect of transferrin on a hybridoma cell line: relation to transferrin iron-transporting function. Exp. Cell Res. 182:358–369; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Kovar, J.; Neumannova, V.; Kriegerbeckova, K. Iron and cell growth in vitro. In Vitro Cell. Dev. Biol. 29A:115A (Abstract); 1993.

  22. Kriegerbeckova, K.; Kovar, J.; Neumannova, V. Production of transferrin by human cell lines in a defined protein-free system: detection by an ELISA. Immunol. Cell Biol. 71:303–309; 1993.

    PubMed  CAS  Google Scholar 

  23. Kühn, L. C.; Hentze, M. W. Coordination of cellular iron metabolism by post-transcriptional gene regulation. J. Inorg. Biochem. 47:183–195; 1992.

    Article  PubMed  Google Scholar 

  24. Kühn, L.; Schulman, M.; Ponka, P. Iron-transferrin requirements and transferrin receptor expression in proliferating cells. In: Ponka, P.; Schulman, H. M.; Woodworth, R. C., eds. Iron transport and storage. Boca Raton: CRC Press; 1990:149–191.

    Google Scholar 

  25. Laskey, J.; Webb, I.; Schulman, H. M., et al. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis. Exp. Cell Res. 176:87–95; 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Leibold, E. A.; Munro, H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc. Natl. Acad. Sci. USA 85:2171–2175; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. May, W. S.; Cuartecasas, P. Transferrin receptor: its biological significance. J. Membr. Biol. 88:205–215; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods 65:55–63; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Müllner, E. W.; Neupert, B.; Kühn, L. C. A specific mRNA-binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58:373–382; 1989.

    Article  PubMed  Google Scholar 

  30. Neumannova, V.; Richardson, D. R.; Kriegerbeckova, K., et al. Growth of human tumor cell lines in transferrin-free, low-iron medium. In Vitro Cell. Dev. Biol. 31:625–632; 1995.

    CAS  Google Scholar 

  31. Nocka, K. H.; Pelus, L. M. Cell cycle specific effects of deferoxamine on human and murine hematopoietic progenitor cells. Cancer Res. 48:3571–3575; 1988.

    PubMed  CAS  Google Scholar 

  32. Qian, Z. M.; Morgan, E. H. Effect of metabolic inhibitors on uptake of non-transferrin-bound iron by reticulocytes. Biochim. Biophys. Acta 1073:456–462; 1991.

    PubMed  CAS  Google Scholar 

  33. Rothenberger, S.; Müllner, E. W.; Kühn, L. C. The mRNA-binding protein which controls ferritin and transferrin receptor expression is conserved during evolution. Nucleic Acids Res. 18:1175–1179; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Seligman, P. A.; Kovar, J.; Schleicher, R. B., et al. Transferrin-independent iron uptake supports B lymphocyte growth. Blood 78:1526–1531; 1991.

    PubMed  CAS  Google Scholar 

  35. Sturrock, A.; Alexander, J.; Lamb, J., et al. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J. Biol. Chem. 265:3139–3145; 1990.

    PubMed  CAS  Google Scholar 

  36. Trowbridge, I. S.; Shackelford, D. A. Structure and function of transferrin receptors and their relationship to cell growth. Biochem. Soc. Symp. 51:117–129; 1985.

    CAS  Google Scholar 

  37. Tsao, M. S.; Sanders, G. S. H.; Grisham, J. W. Regulation of growth of cultured hepatic epithelial cells by transferrin. Exp. Cell Res. 171:52–62; 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Vostrejs, M.; Moran, P. L.; Seligman, P. A. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation. J. Clin. Invest. 82:331–339; 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Walden, W. E.; Patino, M. M.; Gaffield, L. Purification of a specific repressor of ferritin mRNA translation from rabbit liver. J. Biol. Chem. 264:13765–13769; 1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovář, J., Kühn, L.C., Richardson, V. et al. The inability of cells to grow in low iron correlates with increasing activity of their iron regulatory protein (IRP). In Vitro Cell.Dev.Biol.-Animal 33, 633–639 (1997). https://doi.org/10.1007/s11626-997-0114-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0114-2

Key words

Navigation